Main > Advanced Photonics >  Volume 1 >  Issue 1 >  Page 016005 > Article
  • References
  • Abstract
  • Figures (5)
  • Tables (0)
  • Equations (14)
  • References (38)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jun. 22, 2018

    Accepted: Nov. 8, 2018

    Posted: Feb. 18, 2019

    Published Online: Feb. 18, 2019

    The Author Email: Zhao Chengliang (

    DOI: 10.1117/1.AP.1.1.016005

  • Get Citation
  • Copy Citation Text

    Xingyuan Lu, Yifeng Shao, Chengliang Zhao, Sander Konijnenberg, Xinlei Zhu, Ying Tang, Yangjian Cai, H. Paul Urbach. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 2019, 1(1): 016005

    Download Citation

  • Category
  • Research Articles
  • Share

[1] J. Miao, et al.. Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone. Phys. Rev. Lett., 95, 085503(2005).

[2] C. Song, et al.. Quantitative imaging of single, unstained viruses with coherent x rays. Phys. Rev. Lett., 101, 158101(2008).

[3] J. Miao, et al.. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342-344(1999).

[4] R. W. Gerchberg. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

[5] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

[6] J. R. Fienup. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A, 4, 118-123(1987).

[7] H. M. L. Faulkner, J. M. Rodenburg. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93, 023903(2004).

[8] J. M. Rodenburg, et al.. Hard-x-ray lensless imaging of extended objects. Phys. Rev. Lett., 98, 034801(2007).

[9] A. M. Maiden, J. M. Rodenburg. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256-1262(2009).

[10] N. Nakajima. Noniterative phase retrieval from a single diffraction intensity pattern by use of an aperture array. Phys. Rev. Lett., 98, 223901(2007).

[11] C. S. Guo, et al.. Real-time coherent diffractive imaging with convolution-solvable sampling array. Opt. Lett., 35, 850-852(2010).

[12] A. P. Konijnenberg, et al.. A non-iterative method for phase retrieval and coherence characterization by focus variation using a fixed star-shaped mask. Opt. Express, 26, 9332-9343(2018).

[13] A. P. Konijnenberg, W. M. J. Coene, H. P. Urbach. Non-iterative phase retrieval by phase modulation through a single parameter. Ultramicroscopy, 174, 70-78(2017).

[14] Y. Shao, et al.. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography. Opt. Express, 26, 4479-4490(2018).

[15] L. W. Whitehead, et al.. Diffractive imaging using partially coherent x rays. Phys. Rev. Lett., 103, 243902(2009).

[16] S. Flewett, et al.. Extracting coherent modes from partially coherent wavefields. Opt. Lett., 34, 2198-2200(2009).

[17] P. Thibault, A. Menzel. Reconstructing state mixtures from diffraction measurements. Nature, 494, 68-71(2013).

[18] J. N. Clark, et al.. Continuous scanning mode for ptychography. Opt. Lett., 39, 6066-6069(2014).

[19] J. N. Clark, et al.. Dynamic imaging using ptychography. Phys. Rev. Lett., 112, 113901(2014).

[20] B. Chen, et al.. Diffraction imaging: the limits of partial coherence. Phys. Rev. B, 86, 235401(2012).

[21] P. Li, et al.. Breaking ambiguities in mixed state ptychography. Opt. Express, 24, 9038-9052(2016).

[22] N. Burdet, et al.. Evaluation of partial coherence correction in x-ray ptychography. Opt. Express, 23, 5452-5467(2015).

[23] M. Lurie. Fourier-transform holograms with partially coherent light: holographic measurement of spatial coherence. J. Opt. Soc. Am., 58, 614-619(1968).

[24] D. H. Parks, X. Shi, S. D. Kevan. Partially coherent x-ray diffractive imaging of complex objects. Phys. Rev. A, 89, 063824(2014).

[25] I. McNulty, et al.. High-resolution imaging by Fourier transform x-ray holography. Science, 256, 1009-1012(1992).

[26] S. Eisebitt, et al.. Lensless imaging of magnetic nanostructures by x-ray spectro-holography. Nature, 432, 885-888(2004).

[27] L. M. Stadler, et al.. Hard x ray holographic diffraction imaging. Phys. Rev. Lett., 100, 245503(2008).

[28] P. Gao, et al.. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement. Opt. Lett., 36, 4305-4307(2011).

[29] D. M. Palacios, et al.. Spatial correlation singularity of a vortex field. Phys. Rev. Lett., 92, 143905(2004).

[30] W. Wang, et al.. Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function. Phys. Rev. Lett., 96, 073902(2006).

[31] L. C. Andrews, R. L. Phillips, 152(2005).

[32] Y. Cai, et al.. Generation of partially coherent beams. Prog. Opt., 62, 157-223(2017).

[33] Y. Chen, Y. Cai. Generation of a controllable optical cage by focusing a Laguerre–Gaussian correlated Schell-model beam. Opt. Lett., 39, 2549-2552(2014).

[34] Y. Chen, et al.. Experimental demonstration of a Laguerre–Gaussian correlated Schell-model vortex beam. Opt. Express, 22, 5826-5838(2014).

[35] F. Wang, Y. Cai. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. J. Opt. Soc. Am. A, 24, 1937-1944(2007).

[36] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

[37] F. Wang, et al.. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt. Lett., 38, 1814-1816(2013).

[38] J. Wang, et al.. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters. Sci. Rep., 5, 15826(2015).