Main > Photonics Research >  Volume 8 >  Issue 10 >  Page 10001580 > Article
  • Abstract
  • Abstract
  • Figures (6)
  • Tables (0)
  • Equations (2)
  • References (41)
  • Suppl. Mat.
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jun. 2, 2020

    Accepted: Aug. 1, 2020

    Posted: Aug. 4, 2020

    Published Online: Sep. 18, 2020

    The Author Email: Youjian Song (yjsong@tju.edu.cn), Minglie Hu (huminglie@tju.edu.cn)

    DOI: 10.1364/PRJ.398316

  • Get Citation
  • Copy Citation Text

    Yuwei Zhao, Jintao Fan, Youjian Song, Uwe Morgner, Minglie Hu. Extraction of internal phase motions in femtosecond soliton molecules using an orbital-angular-momentum-resolved method[J]. Photonics Research, 2020, 8(10): 10001580

    Download Citation

  • Category
  • Lasers and Laser Optics
  • Share
Photonics Research, Vol. 8, Issue 10, 10001580 (2020)

Extraction of internal phase motions in femtosecond soliton molecules using an orbital-angular-momentum-resolved method 

Yuwei Zhao1,†, Jintao Fan2,3,†, Youjian Song1,5,*, Uwe Morgner2,3,4, and Minglie Hu1,6,*

Author Affiliations

  • 1Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
  • 3Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167 Hannover, Germany
  • 4Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
  • 5e-mail: yjsong@tju.edu.cn
  • 6e-mail: huminglie@tju.edu.cn

Abstract

Internal motions in femtosecond soliton molecules provide insight into universal collective dynamics in various nonlinear systems. Here we introduce an orbital-angular-momentum (OAM)-resolved method that maps the relative phase motion within a femtosecond soliton molecule into the rotational movement of the interferometric beam profile of two optical vortices. By this means, long-term relative phase evolutions of doublet and triplet soliton molecules generated in an all-polarization-maintaining mode-locked Er-fiber laser are revealed. This simple and practical OAM-resolved method represents a promising way to directly visualize the complex phase dynamics in a diversity of multisoliton structures.

Please Enter Your Email: