Main > Laser & Optoelectronics Progress >  Volume 55 >  Issue 7 >  Page 70001 > Article
  • References
  • Abstract
  • View Summary
  • Figures (0)
  • Tables (0)
  • Equations (0)
  • References (96)
  • Get PDF(in Chinese)
  • Paper Information
  • Received: Dec. 13, 2017

    Accepted: --

    Posted: Apr. 1, 2018

    Published Online: Jul. 20, 2018

    The Author Email: Yanxia Cui (yanxiacui@gmail.com)

    DOI: 10.3788/lop55.070001

  • Get Citation
  • Copy Citation Text

    Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70001

    Download Citation

  • Category
  • Reviews
  • Share

[1] Zhao W J. Developments in technology of photomultipliers[J].Optoelectronic Technology, 2011, 31(3): 145-148.

[2] Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[3] Wang Y, Zhang R. Photodetector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 2016, 36(2): 0230002.

[4] Li C, Zhang D L, Xue C L, et al. Progress in the study of Si-based group IV optoelectronic devices (II): photodetectors[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110002.

[5] Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature Photonics, 2015, 9: 843-848.

[6] Yan P Q, Meng W D, Wang Y R, et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080403.

[7] Yang H, Cao Y, He J H, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003.

[8] Dong H L, Zhu H F, Meng Q, et al. Organic photoresponse materials and devices[J]. Chemical Society Reviews, 2012, 41(5): 1754-1808.

[9] Liu J H, Liu J Y, Guan X Y. Measurement of linearity and time response parameters for photomultiplier tube[J].Nuclear Electronics & Detection Technology, 2005, 25(6): 768-771.

[10] Fang Z Y, Wang Y M, Liu Z, et al. Plasmon-induced doping of graphene[J]. ACS Nano, 2012, 6(11): 10222-10228.

[11] Wu X J, Wu J H. Principle, characteristics and application of photoelectric magnification tube[J]. Electronic Design Engineering, 2001(8): 13-17.

[12] Ju Y R, Song J, Geng Z X, et al. A microfluidics cytometer for mice anemia detection[J]. Lab on a Chip, 2012, 12(21): 4355-4362.

[13] Li W, Wang Y, Wu T F. Progress in black silicon infrared detectors[J]. Laser & Optoelectronics Progress, 2016, 53(7): 070004.

[14] Pearsall T P, Temkin H, Bean J C, et al. Avalanche gain in GexSi1-x/Si infrared waveguide detectors[J]. IEEE Electron Device Letters, 1986, 7(5): 330-332.

[15] Lei Z D. Principle and application of photoelectric detector[J]. Physics, 1994, 23(4): 220-226.

[16] Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1): 59-63.

[17] Yin L J, Chen Q, Zhang C L. Spectral response characterization of avalanche photodiode[J]. Laser & Optoelectronics Progress, 2010, 47(11): 111101.

[18] Renker D. Geiger-mode avalanche photodiodes, history, properties and problems[J]. Nuclear Instruments & Methods in Physics Research A, 2006, 567(1): 48-56.

[19] Liu F H, Xu J T, Wang L, et al. GaN-based avalanche photodiodes and its recent development[J]. Infrared and Laser Engineering, 2014, 43(4): 1215-1221.

[20] Rauch T, Bberl M, Tedde S F, et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J]. Nature Photonics, 2009, 3(6): 332-336.

[21] Mu J Y, Xu J, Liangshi Q S, et al. Progress of organic thin film solar cells[J].Electronics Process Technology, 2007, 28(2): 93-96.

[22] Peumans P, Bulovic V, Forrest S R. Efficient, high-bandwidth organic multilayer photodetectors[J]. Applied Physics Letters, 2000, 76(26): 3855-3857.

[23] Guo Z H, Hu Z B, Sun Z R, et al. Density functional theory studies on ionization energies, electron affinities, and polarization energies of organic semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1171-1180.

[24] Li L L, Zhang F J, Wang J, et al. Achieving EQE of 16700% in P3HT∶PC71BM based photodetectors by trap-assisted photomultiplication[J]. Scientific Reports, 2015, 5: 9181.

[25] Zhang L, Yang D, Wang H W, et al. Solution-processed all-organic P3HT-based photodetector[J]. Infrared and Laser Engineering, 2015, 44(10): 2975-2980.

[26] Li L L, Zhang F J, Wang W B, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5890-5897.

[27] Li L L, Zhang F J, Wang W B, et al. Revealing the working mechanism of polymer photodetectors with ultra-high external quantum efficiency[J]. Physical Chemistry Chemical Physics, 2015, 17(45): 30712-30720.

[28] Ji R B, Tang L B, Zhang X D. The prospect of the study on organic semiconductor detector materials[J]. Infrared Technology, 2006, 28(1): 2-6.

[29] Esopi M R, Calcagno M, Yu Q M. Organic ultraviolet photodetectors exhibiting photomultiplication, low dark current, and high stability[J]. Advanced Materials Technologies, 2017, 2(8): 1700025.

[30] Li W L. Organic/polymer photodetector (PDs)[J]. OME Information, 2011, 28(4): 1-15.

[31] Huang J S, Yang Y. Origin of photomultiplication in C60 based devices[J]. Applied Physics Letters, 2007, 91(20): 203505.

[32] Wu S H, Li W L, Chu B, et al. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm[J]. Applied Physics Letters, 2011, 99(2): 023305.

[33] Hiramoto M, Imahigashi T, Yokoyama M. Photocurrent multiplication in organic pigment films[J]. Applied Physics Letters, 1994, 64(2): 187-189.

[34] Wang H B, Yan D H. Crystalline organic semiconductor heterojunction devices[J]. Science China, 2009, 39(1): 1-21.

[35] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells: towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6): 789-794.

[36] Zhang T H, Piao L Y, Zhao S L, et al. New progress in study of organic solar cell materials[J]. Chinese Journal of Organic Chemistry, 2011, 31(2): 260-272.

[37] Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

[38] Katsume T, Hiramoto M, Yokoyama M. Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature[J]. Applied Physics Letters, 1996, 69(24): 3722-3724.

[39] Hiramoto M, Kawase S, Yokoyama M. Photoinduced hole injection multiplication in p-type quinacridone pigment films[J]. Japanese Journal of Applied Physics, 1996, 35(3A): L349-L351.

[40] Hiramoto M, Nakayama K, Katsume T, et al. Field-activated structural traps at organic pigment/metal interfaces causing photocurrent multiplication phenomena[J]. Applied Physics Letters, 1998, 73(18): 2627-2629.

[41] Hiramoto M, Sato I, Nakayama K, et al. Photocurrent multiplication at organic/metal interface and morphology of metal films[J]. Japanese Journal of Applied Physics, 1998, 37: L1184-L1186.

[42] Huang D, Xu Z, Zhao S L, et al. Understanding the effected efficiencies of polymer solar cells employing different fullerene multiadducts as acceptors[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2363-2367.

[43] Wang W B, Zhang F J, Li L L, et al. Improved performance of photomultiplication polymer photodetectors by adjustment of P3HT molecular arrangement[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22660-22668.

[44] Zhuo Z L, Zhang F J, Xu X W, et al. Photovoltaic performance improvement of P3HT∶PCBM polymer solar cells by annealing treatment[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 875-880.

[45] Melancon J M, Zivanovic S R. Broadband gain in poly(3-hexylthiophene): phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer[J]. Applied Physics Letters, 2014, 105(16): 163301.

[46] Wang T N, Hu Y F, Deng Z B, et al. High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer[J]. RSC Advances, 2017, 7(3): 1743-1748.

[47] Zhou X K, Yang D Z, Ma D G, et al. Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer[J]. Advanced Functional Materials, 2016, 26(36): 6619-6626.

[48] Guo F W, Xiao Z G, Huang J S. Fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer[J]. Advanced Optical Materials, 2013, 1(4): 289-294.

[49] Miao J L, Zhang F J, Lin Y Z, et al. Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias[J]. Advanced Optical Materials, 2016, 4(11): 1711-1717.

[50] Guo F W, Yang B, Yuan Y B, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnology, 2012, 7(12): 798-802.

[51] Qi D F, Fischbein M. Efficient polymer-nanocrystal quantum-dot photodetectors[J]. Applied Physics Letters, 2005, 86(9): 093103.

[52] Campbell I H, Crone B K. Bulk photoconductive gain in poly(phenylene vinylene) based diodes[J]. Journal of Applied Physics, 2007, 101(2): 024502.

[53] Chen H Y, Lo M K, Yang G W, et al. Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix[J]. Nature Nanotechnology, 2008, 3(9): 543-547.

[54] Chen F C, Chien S C, Cious G L. Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response[J]. Applied Physics Letters, 2010, 97(10): 103301.

[55] Zhang J, Yang X C, Feng X D. Research progress of organic solar cells structure[J]. Electronic Components and Materials, 2012, 31(11): 79-82.

[56] Jansen-van Vuuren R D, Armin A, Pandey A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

[57] Yan D H, Wang H B, Du B X. Organic semiconductor heterostructure introduction[M]. Beijing: Science Press, 2008.

[58] Hiramoto M, Fujino K, Yoshida M, et al. Influence of oxygen and water on photocurrent multiplication in organic semiconductor films[J]. Japanese Journal of Applied Physics, 2003, 42(2A): 672-675.

[59] Hiramoto M, Suemori K, Yokoyama M. Influence of oxygen on photocurrent multiplication phenomenon at organic/metal interface[J]. Japanese Journal of Applied Physics, 2003, 42(4): 2495-2497.

[60] Hammond W T, Xue J G. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain[J]. Applied Physics Letters, 2010, 97(7): 073302.

[61] Dubler T K, Neher D, Rost H, et al. Efficient bulk photogeneration of charge carriers and photoconductivity gain in arylamino-PPV polymer sandwich cells[J]. Physical Review B, 1999, 59(3): 1964-1972.

[62] Li X L, Wang S R, Xiao Y, et al. A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles[J]. Journal of Materials Chemistry C, 2016, 4: 5584-5592.

[63] Wang W Y, Hao Y Y, Cui Y X, et al. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices[J]. Optics Express, 2014, 22(S2): A376-A385.

[64] Cui Y X, Zhao H Y, Yang F, et al. Efficiency enhancement in organic solar cells by incorporating silica-coated gold nanorods at the buffer/active interface[J]. Journal of Materials Chemistry C, 2015, 3(38): 9859-9868.

[65] Hao Y, Song J C, Yang F, et al. Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer[J]. Journal of Materials Chemistry C, 2015, 3(5): 1082-1090.

[66] Liu D K, Liang Q B, Li G H, et al. Improved efficiency of organic photovoltaic cells by incorporation of AuAg-alloyed nanoprisms[J]. IEEE Journal of Photovoltaics, 2017, 7(4): 1036-1041.

[67] Wang W B, Zhang F J, Bai H T, et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale, 2016, 8(10): 5578-5586.

[68] Nakayama K I, Hiramoto M, Yokoyama M. Photocurrent multiplication at organic/metal interface and surface morphology of organic films[J]. Journal of Applied Physics, 2000, 87(7): 3365-3369.

[69] Fang Y J, Guo F W, Xiao Z G, et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB[J]. Advanced Optical Materials, 2014, 2(4): 348-353.

[70] Nakayama K I, Hiramoto M, Yokoyama M. A high-speed photocurrent multiplication device based on an organic double-layered structure[J]. Applied Physics Letters, 2000, 76(9): 1194-1196.

[71] Hiramoto M, Miki A, Yoshida M, et al. Photocurrent multiplication in organic single crystals[J]. Applied Physics Letters, 2002, 81(8): 1500-1502.

[72] Matsunobu G, Oishi Y, Yokoyama M, et al. High-speed multiplication-type photodetecting device using organic codeposited films[J]. Applied Physics Letters, 2002, 81(7): 1321-1322.

[73] Chuang S T, Chien S C, Chen F C. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants[J]. Applied Physics Letters, 2012, 100(1): 013309.

[74] Dong R, Bi C, Dong Q F, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554.

[75] Wang W B, Zhang F J, Li L L, et al. Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region[J]. Journal of Materials Chemistry C, 2015, 3(28): 7386-7393.

[76] Liu C, Peng H, Wang K, et al. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors[J]. Nano Energy, 2016, 30: 27-35.

[77] Zhou L, Wang R, Yao C, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6: 6938.

[78] Nishiwaki S, Nakamura T, Hiramoto M, et al. Efficient colour splitters for high-pixel-density image sensors[J]. Nature Photonics, 2013, 7(3): 240-246.

[79] Wan Y, Zhou Y G, Poudineh M, et al. Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling[J]. Angewandte Chemie, 2014, 53(48): 13145-13149.

[80] Kelley S O, Mirkin C A, Walt D R, et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering[J]. Nature Nanotechnology, 2014, 9(12): 969-980.

[81] Shen L, Zhang Y, Bai Y, et al. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain[J]. Nanoscale, 2016, 8(26): 12990-12997.

[82] Lee M L, Chi P F, Sheu J K. Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio[J]. Applied Physics Letters, 2009, 94(1): 013512.

[83] Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59.

[84] Park H, Dan Y P, Seo K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption[J]. Nano Letters, 2014, 14(4): 1804-1809.

[85] Jansen-van Vuuren, R D, Pivrikas A, Pandey A, et al. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers[J]. Journal of Materials Chemistry C, 2013, 1(22): 3532-3543.

[86] Su Z S, Li W L, Chu B, et al. High response organic ultraviolet photodetector based on blend of 4, 4′, 4″-tri(2-methylphenyl phenylamino)triphenylaine and tris(8-hydroxyquinoline) gallium[J]. Applied Physics Letters, 2008, 93(10): 103309.

[87] Wang W B, Zhang F J, Du M D, et al. Highly narrowband photomultiplication type organic photodetectors[J]. Nano Letters, 2017, 17(3): 1995-2002.

[88] Reynaert J, Arkhipov V I, Heremans P, et al. Photomultiplication in disordered unipolar organic materials[J]. Advanced Functional Materials, 2006, 16(6): 784-790.

[89] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

[90] Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

[91] Wang W Y, Cui Y X, Fung K H, et al. Comparison of nanohole-type and nanopillar-type patterned metallic electrodes incorporated in organic solar cells[J]. Nanoscale Research Letters, 2017, 12: 538.

[92] Lu H D, Tie S N, Liu J. Absorption enhancement of crystalline silicon thin film solar cell using nano binary silver grating[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080401.

[93] Ji T, Wang Y S, Cui Y X, et al. Flexible broadband plasmonic absorber on moth-eye substrate[J]. Materials Today Energy, 2017, 5: 181-186.

[94] Wang Z Y, Hao Y Y, Wang W Y, et al. Incorporating silver-SiO2, core-shell nanocubes for simultaneous broadband absorption and charge collection enhancements in organic solar cells[J]. Synthetic Metals, 2016, 220: 612-620.

[95] Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

[96] Hao Y, Hao Y Y, Sun Q J, et al. Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: optical coupling and interfacial engineering[J]. Materials Today Energy, 2017, 3: 84-91.

Please Enter Your Email: