Main > Chinese Optics Letters >  Volume 14 >  Issue 3 >  Page 030604 > Article
  • Figures
  • Abstract
  • Figures (5)
  • Tables (0)
  • Equations (0)
  • References (15)
  • Cited By (2)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Aug. 16, 2015

    Accepted: Jan. 8, 2016

    Posted: Jan. 24, 2019

    Published Online: Aug. 6, 2018

    The Author Email: Lingjuan Zhao (ljzhao@semi.ac.cn)

    DOI: 10.3788/COL201614.030604

  • Get Citation
  • Copy Citation Text

    Biwei Pan, Liqiang Yu, Lu Guo, Limeng Zhang, Dan Lu, Xin Chen, Yue Wu, Caiyun Lou, Lingjuan Zhao. 100  Gb/s all-optical clock recovery based on a monolithic dual-mode DBR laser[J]. Chinese Optics Letters, 2016, 14(3): 030604

    Download Citation

  • !Citations Alert
  • Category
  • Fiber Optics and Optical Communications
  • Share
Schematic diagram of the proposed DBR-based AOCR. MZM, Mach–Zehnder modulator; EA, electronic amplifier; OMUX, passive polarization maintaining 1×4 optical multiplexer.

Fig. 1. Schematic diagram of the proposed DBR-based AOCR. MZM, Mach–Zehnder modulator; EA, electronic amplifier; OMUX, passive polarization maintaining 1×4 optical multiplexer.

Download full sizeView in Article

(a) Typical free-running optical spectrum of the dual-mode DBR laser. (b) Optical spectra of the device under different DBR currents.

Fig. 2. (a) Typical free-running optical spectrum of the dual-mode DBR laser. (b) Optical spectra of the device under different DBR currents.

Download full sizeView in Article

(a) Optical spectrum of the 100 Gb/s RZ-OOK signal and (b) injection-locked dual-mode DBR laser. (c) Eye diagram of the 100 Gb/s signal. (d) Time trace of the recovered 100 GHz optical clock.

Fig. 3. (a) Optical spectrum of the 100 Gb/s RZ-OOK signal and (b) injection-locked dual-mode DBR laser. (c) Eye diagram of the 100 Gb/s signal. (d) Time trace of the recovered 100 GHz optical clock.

Download full sizeView in Article

(a) Degraded 100 Gb/s injection signal with 4.1 dB OSNR. (b) Time trace of the recovered optical clock. (c) The dependence of the timing jitter of the synchronized clock on the OSNR of the injected signal.

Fig. 4. (a) Degraded 100 Gb/s injection signal with 4.1 dB OSNR. (b) Time trace of the recovered optical clock. (c) The dependence of the timing jitter of the synchronized clock on the OSNR of the injected signal.

Download full sizeView in Article

(a) Eye diagrams and (b) optical spectrum of the 100 Gb/s signal after 25 km transmission. (b) Time trace of the recovered optical clock. (d) Injection-locked optical spectrum of the DBR laser.

Fig. 5. (a) Eye diagrams and (b) optical spectrum of the 100 Gb/s signal after 25 km transmission. (b) Time trace of the recovered optical clock. (d) Injection-locked optical spectrum of the DBR laser.

Download full sizeView in Article

Please Enter Your Email: