Main > Laser & Optoelectronics Progress >  Volume 58 >  Issue 2 >  Page 0200001 > Article
  • References
  • Abstract
  • View Summary
  • Figures (12)
  • Tables (0)
  • Equations (0)
  • References (87)
  • Get PDF(in Chinese)
  • Paper Information
  • Received: Oct. 15, 2020

    Accepted: Dec. 15, 2020

    Posted: Jan. 1, 2021

    Published Online: Jan. 19, 2021

    The Author Email: Pu Jixiong (

    DOI: 10.3788/LOP202158.0200001

  • Get Citation
  • Copy Citation Text

    Ziyang Chen, Li Chen, Weiru Fan, Tengfei Lu, Shaoxin Shen, Jixiong Pu. Progress on Scattering Imaging Technologies Based on Correlation Holography[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0200001

    Download Citation

  • Category
  • Reviews
  • Share

[1] Hardy JW. Adaptive optics for astronomical telescopes[M]. Oxford : Oxford University Press, 1998.

[2] Tyson RK. Principles of adaptive optics[M]. Pittsburgh: Academic Press, 1998.

[3] Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 13, 291-300(1974).

[4] Freund I. Looking through walls and around corners[J]. Physica A: Statistical Mechanics and Its Applications, 168, 49-65(1990).

[5] Nieuwenhuizen T M. Mltiple scattering of classical waves: microscopy, mesoscopy, and diffusion[J]. Reviews of Modern Physics, 71, 313(1999).

[6] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

[7] Park J H, Yu Z P, Lee K, et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 3, 100901(2018).

[8] Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).

[9] He H X, Zhou J Y. Optical imaging beyond conventional limits:an introduction to scattering light imaging techniques[J]. Physics, 45, 660-666(2016).

[10] Zhu L, Shao X P. Research progress on scattering imaging technology[J]. Acta Optica Sinica, 40, 0111005(2020).

[11] Zheng S S, Yang W Q, Situ G H. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 48, 0603005(2019).

[12] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate[J]. Science, 253, 769-771(1991).

[13] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 9, 253-258(2015).

[14] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 3, 745(2012).

[15] Sticker M, Hitzenberger C K, Leitgeb R, et al. Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography[J]. Optics Letters, 26, 518-520(2001).

[16] Li F, Xu T, Nguyen D H, et al. Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy[J]. Journal of Biomedical Optics, 19, 16006(2014).

[17] Tyo J S, Rowe M P, Pugh E N, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Applied Optics, 35, 1855-1870(1996).

[18] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 23, 12189-12206(2015).

[19] Yang Q, Cao L C, Jin G F. Progress in optical focusing techniques aiming to suppress scattering effect in biomedical tissues[J]. Chinese Journal of Lasers, 42, 0901001(2015).

[20] Wen Z B, Wu Y L, Zhang X D, et al. A real time imaging method for internal targets of strongly scattering media with high resolution[J]. Acta Optica Sinica, 35, 0211006(2015).

[21] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).

[22] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

[23] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).

[24] Papadopoulos I N, Jouhanneau J S. Poulet J F A, et al. Scattering compensation by focus scanning holographic aberration probing (F-SHARP)[J]. Nature Photonics, 11, 116-123(2017).

[25] Zhang H B, Zhang X R. Coherence of digital phase conjugation for implementing time reversal in scattering media[J]. Acta Physica Sinica, 67, 054201(2018).

[26] Ma C, Di J, Zhang Y, et al. Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation[J]. Optics Letters, 43, 3333-3336(2018).

[27] Lyu M, Wang H, Li G W, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 1, 36002(2019).

[28] Chen H, Gao Y S, Liu X Z, et al. Imaging through scattering media using speckle pattern classification based support vector regression[J]. Optics Express, 26, 26663-26678(2018).

[29] Guo E L, Zhu S, Sun Y, et al. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect[J]. Optics Express, 28, 2433-2446(2020).

[30] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

[31] Barbastathis G, Ozcan A, Situ G H. On the use of deep learning for computational imaging[J]. Optica, 6, 921-943(2019).

[32] van Putten E, Mosk A. The information age in optics: measuring the transmission matrix[J]. Physics, 3, 1-3(2010).

[33] Katz O, Ramaz F, Gigan S, et al. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix[J]. Nature Communications, 10, 717(2019).

[34] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).

[35] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

[36] Popoff S, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 13, 123021(2011).

[37] Xie X S, Liu Y K, Liang H W, et al. Speckle correlation imaging: from point spread functions to light field plenoptics[J]. Acta Optica Sinica, 40, 0111004(2020).

[38] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

[39] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

[40] Han J H, Tian Y Z, Fan X H, et al. A single-pixel imaging system with a target in the middle of double scattering medium[J]. Acta Optica Sinica, 36, 0611001(2016).

[41] Mahalati R N, Gu R Y, Kahn J M. Resolution limits for imaging through multi-mode fiber[J]. Optics Express, 21, 1656-1668(2013).

[42] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).

[43] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. Journal of the Optical Society of America, 53, 1377-1381(1963).

[44] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 11, 77-79(1967).

[45] Schnars U. Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 13, R85-R101(2002).

[46] Yamaguchi I. Phase-shifting digital holography[M]. // Poon T C. Digital holography and three-dimensional display. Boston: Springer, 145-171(2006).

[47] Latychevskaia T. Iterative phase retrieval for digital holography: tutorial[J]. Journal of the Optical Society of America A, 36, D31-D40(2019).

[48] Latychevskaia T, Fink H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 98, 233901(2007).

[49] Takeda M, Wang W, Duan Z H, et al. Coherence holography[J]. Optics Express, 13, 9629-9635(2005).

[50] Naik D N, Singh R K, Ezawa T, et al. Photon correlation holography[J]. Optics Express, 19, 1408-1421(2011).

[51] Michelson A A, Pease F G. Measurement of the diameter of alpha-orionis by the interferometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 7, 143-146(1921).

[52] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 177, 27-29(1956).

[53] Naik D N, Ezawa T, Miyamoto Y, et al. 3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift[J]. Optics Express, 17, 10633-10641(2009).

[54] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

[55] Takeda M. Spatial stationarity of statistical optical fields for coherence holography and photon correlation holography[J]. Optics Letters, 38, 3452-3455(2013).

[56] Singh R K, Vinu R V, Anandraj S M. Recovery of complex valued objects from two-point intensity correlation measurement[J]. Applied Physics Letters, 104, 111108(2014).

[57] Goodman J W, Huntley W H. Jr, Jackson D W, et al. Wavefront-reconstruction imaging through random media[J]. Applied Physics Letters, 8, 311-313(1966).

[58] Kogelnik H, Pennington K S. Holographic imaging through a random medium[J]. Journal of the Optical Society of America, 58, 273-274(1968).

[59] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 56, 523(1966).

[61] Lohmann A W, Schmalfuss H. Holography through fog. A new version[J]. Optics Communications, 26, 318-321(1978).

[62] Gerritsen H J. Holography and four-wave mixing to see through the skin[J]. Proceedings of SPIE, 0519, 128-131(1985).

[63] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences, 98, 11301-11305(2001).

[64] Leith E, Chen C, Chen H, et al. Imaging through scattering media with holography[J]. Journal of the Optical Society of America A, 9, 1148-1153(1992).

[65] Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Optics Express, 22, 7694-7701(2014).

[66] Li S, Zhong J. Dynamic imaging through turbid media based on digital holography[J]. Journal of the Optical Society of America A, 31, 480-486(2014).

[67] Naik D N, Ezawa T, Miyamoto Y, et al. Phase-shift coherence holography[J]. Optics Letters, 35, 1728-1730(2010).

[68] Naik D N, Ezawa T, Miyamoto Y, et al. Real-time coherence holography[J]. Optics Express, 18, 13782-13787(2010).

[69] Singh R K, Naik D N, Itou H, et al. Vectorial coherence holography[J]. Optics Express, 19, 11558-11567(2011).

[70] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of Optical Society of American, 72, 156-160(1982).

[71] Singh R K, Sharma A M, Das B. Quantitative phase-contrast imaging through a scattering media[J]. Optics Letters, 39, 5054-5057(2014).

[72] Harm W, Roider C, Jesacher A, et al. Lensless imaging through thin diffusive media[J]. Optics Express, 22, 22146-22156(2014).

[73] Zhang H, Liu S, Cao L, et al. Noise suppression for ballistic-photons based on compressive in-line holographic imaging through an inhomogeneous medium[J]. Optics Express, 28, 10337-10349(2020).

[74] Kodama S, Ohta M, Ikeda K, et al. Three-dimensional microscopic imaging through scattering media based on in-line phase-shift digital holography[J]. Applied Optics, 58, G345-G350(2019).

[75] R V V. Kim K, Somkuwar A S, et al. Imaging through scattering media using digital holography[J]. Optics Communications, 439, 218-223(2019).

[76] Munro P R T. Introduction to the theory of coherence and polarization of light[J]. Contemporary Physics, 50, 661-662(2009).

[77] WolfE. Introduction to the theory of coherence and polarization of light[M]. Pu J X, Transl. Beijing: Peking University Press, 2014.

[78] Vinu R V, Singh R K. Synthesis of statistical properties of a randomly fluctuating polarized field[J]. Applied Optics, 54, 6491-6497(2015).

[79] Somkuwar A S, Das B, Vinu R V, et al. Holographic imaging through a scattering layer using speckle interferometry[J]. Journal of the Optical Society of America A, 34, 1392-1399(2017).

[80] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3D objects[J]. Light: Science & Applications, 6, e16219(2017).

[81] Takeda M, Singh A K, Naik D N, et al. Holographic correloscopy: unconventional holographic techniques for imaging a three-dimensional object through an opaque diffuser or via a scattering wall: a review[J]. IEEE Transactions on Industrial Informatics, 12, 1631-1640(2016).

[82] Singh D, Singh R K. Lensless Stokes holography with the Hanbury Brown-Twiss approach[J]. Optics Express, 26, 10801-10812(2018).

[83] Singh R K. Hybrid correlation holography with a single pixel detector[J]. Optics Letters, 42, 2515-2518(2017).

[84] Saluja R. Subrahmanyam G R K S, Mishra D, et al. Compressive correlation holography[J]. Applied Optics, 56, 6949-6955(2017).

[85] Das B, Bisht N S, Vinu R V, et al. Lensless complex amplitude image retrieval through a visually opaque scattering medium[J]. Applied Optics, 56, 4591-4597(2017).

[86] Vinu R V, Chen Z, Singh R K, et al. Ghost diffraction holographic microscopy[J]. Optica, 7, 1697-1704(2020).

[87] Chen L, Singh R K, Chen Z, et al. Phase shifting digital holography with the Hanbury Brown-Twiss approach[J]. Optics Letters, 45, 212-215(2020).

[88] Chen L, Chen Z Y, Chen Z Y, et al. Imaging of polarimetric-phase object through scattering medium by phase shifting[J]. Optics Express, 28, 8145-8155(2020).

Please Enter Your Email: