Main > Advanced Photonics >  Volume 2 >  Issue 3 >  Page 034001 > Article
  • References
  • Abstract
  • Figures (21)
  • Tables (1)
  • Equations (4)
  • References (158)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jan. 28, 2020

    Accepted: Apr. 23, 2020

    Posted: Jun. 22, 2020

    Published Online: Jun. 22, 2020

    The Author Email: Wang Weiqiang (, Wang Leiran (, Zhang Wenfu (

    DOI: 10.1117/1.AP.2.3.034001

  • Get Citation
  • Copy Citation Text

    Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001

    Download Citation

  • Category
  • Reviews
  • Share

[1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

[2] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

[3] A. A. Savchenkov, et al.. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett., 93, 243905(2004).

[4] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

[5] W. Q. Wang, et al.. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 6, 28501(2016).

[6] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

[7] D. K. Armani, et al.. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

[8] P. Del’Haye, et al.. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

[9] Y. Okawachi, et al.. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

[10] T. Herr, et al.. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

[11] D. C. Cole, et al.. Kerr-microresonator solitons from a chirped background. Optica, 5, 1304-1310(2018).

[12] V. Brasch, et al.. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

[13] X. Yi, et al.. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

[14] C. Joshi, et al.. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 41, 2565-2568(2016).

[15] Z. Lu, et al.. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 9, 025314(2019).

[16] H. Zhou, et al.. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

[17] Q.-F. Yang, et al.. Stokes solitons in optical microcavities. Nat. Phys., 13, 53-57(2017).

[18] Q.-F. Yang, et al.. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

[19] W. Q. Wang, et al.. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

[20] C. Bao, et al.. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

[21] H. Bao, et al.. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384-389(2019).

[22] W. Weng, et al.. Heteronuclear soliton molecules in optical microresonators.

[23] X. Xue, et al.. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

[24] T. Herr, et al.. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

[25] M. Karpov, et al.. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

[26] X. Yi, et al.. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

[27] Z. Lu, et al.. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator. Opt. Mater. Express, 8, 2662-2669(2018).

[28] R. Niu, et al.. Repetition rate tuning of soliton in microrod resonators(2018).

[29] S. Y. Zhang, et al.. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

[30] Z. Gong, et al.. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366-4369(2018).

[31] Y. He, et al.. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

[32] M. Yu, et al.. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

[33] S. H. Lee, et al.. Towards visible soliton microcomb generation. Nat. Commun., 8, 1295(2017).

[34] M. H. P. Pfeiffer, et al.. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

[35] M. Karpov, et al.. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun., 9, 1146(2018).

[36] I. S. Grudinin, et al.. High-contrast Kerr frequency combs. Optica, 4, 434-437(2017).

[37] P.-H. Wang, et al.. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express, 24, 10890-10897(2016).

[38] M. Suh, et al.. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

[39] P. Marin-Palomo, et al.. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

[40] D. T. Spencer, et al.. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

[41] P. Trocha, et al.. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

[42] M.-G. Suh, et al.. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

[43] A. Pasquazi, et al.. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

[44] L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

[45] N. G. Pavlov, et al.. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

[46] D. C. Cole, et al.. Soliton crystals in Kerr resonaotors. Nat. Photonics, 11, 671-676(2017).

[47] J. R. Stone, et al.. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

[48] Q. Li, et al.. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

[49] C. Bao, et al.. Direct soliton generation in microresonators. Opt. Lett., 42, 2519-2522(2017).

[50] Y. Geng, et al.. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb. Opt. Lett., 43, 2406-2409(2018).

[51] M. Yu, et al.. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

[52] B. Stern, et al.. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

[53] J. Liu, et al.. Ultralow-power chip-based SMCs for photonic integration. Optica, 5, 1347-1353(2018).

[54] B. Yao, et al.. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

[55] Z. Gong, et al.. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019).

[56] Y. K. Chembo, N. Yu. Modal expansion approach to optical frequency-comb generation with monolithic whispering gallery-mode resonators. Phys. Rev. A, 82, 033801(2010).

[57] Y. K. Chembo, N. Yu. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. Opt. Lett., 35, 2696-2698(2010).

[58] A. B. Matsko, et al.. Mode-locked Kerr frequency combs. Opt. Lett., 36, 2845-2847(2011).

[59] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallerymode resonators. Phys. Rev. A, 87, 053852(2013).

[60] S. Coen, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).

[61] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

[62] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393-397(1989).

[63] V. Brasch, et al.. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 24, 29312-29320(2016).

[64] X. Yi, et al.. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett., 41, 2037-2040(2016).

[65] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

[66] Y. Geng, et al.. Kerr frequency comb dynamics circumventing cavity thermal behavior(2017).

[67] S. Zhang, J. Silver, P. Del’Haye. Spectral extension and synchronisation of microcombs in a single microresonator(2020).

[68] X. Guo, et al.. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl., 10, 014012(2018).

[69] H. Guo, et al.. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

[70] V. V. Vassiliev, et al.. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun., 158, 305-312(1998).

[71] N. M. Kondratiev, et al.. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

[72] A. S. Raja, et al.. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

[73] M.-G. Suh, et al.. Directly pumped 10 GHz microcomb modules from low-power diode lasers. Opt. Lett., 44, 1841-1843(2019).

[74] B. Shen, et al.. Integrated turnkey soliton microcombs operated at CMOS frequencies(2019).

[75] A. S. Voloshin, et al.. Dynamics of soliton self-injection locking in a photonic chip-based microresonator(2020).

[76] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

[77] E. Obrzud, et al.. A microphotonic astrocomb. Nat. Photonics, 13, 31-35(2019).

[78] F. Leo, et al.. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471-476(2010).

[79] M. Pang, et al.. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics, 10, 454-458(2016).

[80] L. Stern, et al.. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 6, eaax6230(2020).

[81] B. L. Zhao, et al.. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl. Phys. Express, 13, 032009(2020).

[82] M. Karpov, et al.. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

[83] Y. He, et al.. Perfect soliton crystals on demand(2019).

[84] K. Y. Yang, et al.. Broadband dispersion-engineered microresonator on-a-chip. Nat. Photonics, 10, 316-320(2016).

[85] H. Guo, et al.. Intermode breather solitons in optical microresonators. Phys. Rev. X, 7, 041055(2017).

[86] C. J. Bao, et al.. Effect of a breather soliton in Kerr frequency combs on optical communication systems. Opt. Lett., 41, 1764(2016).

[87] A. B. Matsko, A. A. Savchenkov, L. Maleki. On excitation of breather solitons in an optical microresonator. Opt. Lett., 37, 4856-4858(2012).

[88] E. Lucas, et al.. Breathing dissipative solitons in optical microresonators. Nat. Commun., 8, 736(2017).

[89] B. Kibler, et al.. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 6, 790-795(2010).

[90] M. Peccianti, et al.. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 3, 765(2012).

[91] W. Wang, et al.. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics., 4, 1677-1683(2017).

[92] P. P. Rivas, et al.. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett., 41, 2402-2405(2016).

[93] P. P. Rivas, et al.. Dark solitons in the Lugiato–Lefever equation with normal dispersion. Phys. Rev. A, 93, 063839(2016).

[94] L. R. Wang. Coexistence and evolution of bright pulses and dark solitons in a fiber laser. Opt. Commun., 297, 129-132(2013).

[95] P. P. Rivas, D. Gomila, L. Gelens. Coexistence of stable dark- and bright-soliton Kerr combs in normal-dispersion resonators. Phys. Rev. A, 95, 053863(2017).

[96] X. H. Hu, et al.. Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion. Chin. Phys. B, 26, 074216(2017).

[97] X. X. Xue, et al.. Normal-dispersion microcombs enabled by controllable mode interactions. Laser and Photonic Rev., 9, L23-L28(2015).

[98] L. R. Wang, et al.. Observations of four types of pulses in a fiber laser with large net-normal dispersion. Opt. Express, 19, 7616-7624(2011).

[99] V. E. Lobanov, G. Lihachev, M. L. Gorodetsky. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhys. Lett., 112, 54008(2015).

[100] A. A. Savchenkov, et al.. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett., 101, 093902(2008).

[101] W. Liang, et al.. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

[102] S. W. Huang, et al.. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

[103] Y. Liu, et al.. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 2, 137-144(2014).

[104] X. X. Xue, et al.. Second-harmonic assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl., 6, e16253(2017).

[105] Z.-X. Ding, et al.. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Adv. Photon., 2, 026002(2020).

[106] H. Zhang, et al.. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express, 16, 12618-12623(2008).

[107] Y. Xiang, et al.. Scalar and vector solitons in a bidirectional mode-locked fibre laser. J. Lightwave Technol., 37, 5108-5114(2019).

[108] D. Mao, et al.. Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser. Laser Phys. Lett., 8, 134-138(2011).

[109] N.Akhmediev and A.Ankiewicz, Dissipative Solitons, Lecture Notes in Physics, Vol. 661, Springer-Verlag, Berlin, Heidelberg (2005).

[110] G. Fibich, B. Ilan. Optical light bullets in a pure Kerr medium. Opt. Lett., 29, 887-889(2004).

[111] M. Tlidi, et al.. Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in Kerr optical frequency comb and in all fiber cavities. Chaos, 27, 114312(2017).

[112] Y. F. Song, et al.. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photon., 2, 024001(2020).

[113] L. R. Wang, X. M. Liu, Y. K. Gong. Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers. Laser Phys. Lett., 7, 63-67(2010).

[114] L. R. Wang, et al.. Dissipative soliton generation/compression in a compact all-fibre laser system. Electron. Lett., 47, 392-393(2011).

[115] J. Pfeifle, et al.. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).

[116] A. Fülöp, et al.. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

[117] M. Mazur, et al.. Enabling high spectral efficiency coherent super channel transmission with SMCs(2018).

[118] Q. Yang, et al.. Vernier spectrometer using counter-propagating SMCs. Science, 363, 965-968(2019).

[119] A. Dutt, et al.. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

[120] M. Yu, et al.. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

[121] E. Lucas, et al.. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

[122] J. Riemensberger, et al.. Massively parallel coherent laser ranging using soliton microcombs(2019).

[123] J. Wang, et al.. Long distance measurement using single soliton microcomb(2020).

[124] S. B. Papp, et al.. Microresonator frequency comb optical clock. Optica, 2, 10-14(2014).

[125] P. Del’Haye, et al.. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516-520(2016).

[126] S.-W. Huang, et al.. A broadband chip-scale optical frequency synthesizer at 2.7×1016 relative uncertainty. Sci. Adv., 2, e1501489(2016).

[127] Z. L. Newman, et al.. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

[128] F. Alishahi, et al.. Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb. Opt. Lett., 44, 1852-1855(2019).

[129] W. Liang, et al.. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

[130] W. Weng, et al.. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

[131] X. Xu, et al.. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express, 26, 2569-2583(2018).

[132] X. Xu, et al.. An optical micro-comb with a 50-GHz free spectral range for photonic microwave true time delays(2017).

[133] X. Y. Xu, et al.. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

[134] X. X. Xue, A. M. Weiner. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron., 9, 238-248(2016).

[135] X. X. Xue, et al.. Microresonator frequency combs for integrated microwave photonics. IEEE Photonics Technol. Lett., 30, 1814-1817(2018).

[136] M. Kues, et al.. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).

[137] C. Reimer, et al.. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

[138] M. Kues, et al.. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

[139] F.-X. Wang, et al.. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 14, 1900190(2020).

[140] L. Caspani, et al.. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 5, 351-362(2016).

[141] C. L. Xiong, B. Bell, B. J. Eggleton. CMOS-compatible photonic devices for single-photon generation. Nanophotonics, 5, 427-439(2016).

[142] C. Reimer, et al.. CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs. Opt. Express, 22, 6535-6546(2014).

[143] W. C. Jiang, et al.. Silicon-chip source of bright photon pairs. Opt. Express, 23, 20884-20904(2015).

[144] R. Wakabayashi, et al.. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express, 23, 1103-1113(2015).

[145] D. Grassani, et al.. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88-94(2015).

[146] P. Imany, et al.. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express, 26, 1825-1840(2018).

[147] T. J. Kippenberg, et al.. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

[148] D. Chen, et al.. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics, 4, 2376-2381(2017).

[149] D. Chen, et al.. Normal dispersion silicon oxynitride microresonator Kerr frequency combs. Appl. Phys. Lett., 115, 051105(2019).

[150] A. Kovach, et al.. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics, 12, 135-222(2020).

[151] B. Y. Kim, et al.. Turn-key, high-efficiency Kerr comb source. Opt. Lett., 44, 4475-4478(2019).

[152] X. X. Xue, X. P. Zheng, B. K. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 13, 616-622(2019).

[153] L. R. Wang, et al.. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev., 10, 631-638(2016).

[154] M. Zhang, et al.. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

[155] J. G. Zhu, et al.. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon., 4, 46-49(2010).

[156] B.-Q. Shen, et al.. Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl., 5, 024011(2016).

[157] D. Xu, et al.. Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Adv. Photon., 2, 046002(2019).

[158] J. Liu, et al.. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon.(2020).

Please Enter Your Email: