Main > Chinese Journal of Lasers >  Volume 47 >  Issue 12 >  Page 1204005 > Article
  • References
  • Abstract
  • View Summary
  • Figures (10)
  • Tables (3)
  • Equations (0)
  • References (25)
  • Get PDF(in Chinese)
  • Paper Information
  • Received: Jun. 9, 2020

    Accepted: Jul. 27, 2020

    Posted: Dec. 1, 2020

    Published Online: Nov. 18, 2020

    The Author Email: Yang Ping (pingyang2516@163.com)

    DOI: 10.3788/CJL202047.1204005

  • Get Citation
  • Copy Citation Text

    Junlong Wu, Zhenghua Guo, Xianfeng Chen, Shuai Ma, Xu Yan, Licheng Zhu, Shuai Wang, Ping Yang. Three-Dimensional Measurement Method of Light Field Imaging Based on Deep Learning[J]. Chinese Journal of Lasers, 2020, 47(12): 1204005

    Download Citation

  • Category
  • measurement and metrology
  • Share

[1] Furukawa Y, Hernández C. Multi-view stereo: a tutorial[J]. Foundations and Trends in Computer Graphics and Vision, 9, 1-148(2015).

[2] Fu L, Hong H B, Wang X, et al. Non-Lambertian photometric stereo vision based on inverse reflectance model[J]. Acta Optica Sinica, 40, 0520001(2020).

[3] Xiao J S, Tian H, Zou W T, et al. Stereo matching based on convolutional neural network[J]. Acta Optica Sinica, 38, 0815017(2018).

[4] Shan B H, Huo X Y, Liu Y. A stereovision measurement method using epipolar constraint to correct digital image correlation matching[J]. Chinese Journal of Lasers, 44, 0804003(2017).

[5] Bok Y, Jeon H G, Kweon I S. Geometric calibration of micro-lens-based light field cameras using line features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 287-300(2017).

[6] Dansereau DG, PizarroO, Williams SB. Decoding, calibration and rectification for lenselet-based plenoptic cameras[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2013, Portland, OR, USA.New York: IEEE Press, 2013: 1027- 1034.

[7] JohannsenO, HonauerK, GoldlueckeB, et al.A taxonomy and evaluation of dense light field depth estimation algorithms[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA.New York: IEEE Press, 2017: 1795- 1812.

[8] Mishiba K. Fast depth estimation for light field cameras[J]. IEEE Transactions on Image Processing, 29, 4232-4242(2020).

[9] Zhang S, Sheng H, Li C, et al. Robust depth estimation for light field via spinning parallelogram operator[J]. Computer Vision and Image Understanding, 145, 148-159(2016).

[10] Anisimov Y. O W, Stricker D. Rapid light field depth estimation with semi-global matching. [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Jun. 16-20, 2019, Long Beach, CA. New York: IEEE, 78-89(2019).

[11] Anisimov Y, Wasenmüller O, Stricker D. A compact light field camera for real-time depth estimation[J]. Computer Analysis of Images and Patterns, 52-63(2019).

[12] Cai Z W, Liu X L, Pedrini G, et al. Accurate depth estimation in structured light fields[J]. Optics Express, 27, 13532-13546(2019).

[13] Cai Z W, Liu X L, Pedrini G, et al. Light-field depth estimation considering plenoptic imaging distortion[J]. Optics Express, 28, 4156-4168(2020).

[14] Li JK, JinX. Frequency descriptor based light field depth estimation[C]//2019 IEEE Visual Communications and Image Processing (VCIP), December 1-4, 2019, Sydney, Australia.New York: IEEE Press, 2019: 1- 4.

[15] ShinC, Jeon HG, YoonY, et al.EPINET: a fully-convolutional neural network using epipolar geometry for depth from light field images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE Press, 2018: 4748- 4757.

[16] HeberS, YuW, PockT. Neural EPI-volume networks for shape from light field[C]//2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy.New York: IEEE Press, 2017: 2271- 2279.

[17] LeistnerT, SchillingH, MackowiakR, et al.Learning to think outside the box: wide-baseline light field depth estimation with EPI-shift[C]//2019 International Conference on 3D Vision (3DV), September 16-19, 2019, Québec City, QC, Canada. New York: IEEE Press, 2019: 249- 257.

[18] Schiopu I, Munteanu A. Deep-learning-based depth estimation from light field images[J]. Electronics Letters, 55, 1086-1088(2019).

[19] Jeon H G, Park J, Choe G, et al. Depth from a light field image with learning-based matching costs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 297-310(2019).

[20] Kalantari N K, Wang T C, Ramamoorthi R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 35, 1-10(2016).

[21] SunX, Xu ZM, MengN, et al.Data-driven light field depth estimation using deep convolutional neural networks[C]//2016 International Joint Conference on Neural Networks (IJCNN), July 24-29, 2016, Vancouver, BC, Canada.New York: IEEE Press, 2016: 367- 374.

[22] RonnebergerO, FischerP, BroxT. U-net: convolutional networks for biomedical image segmentation[M] //Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234- 241.

[23] Honauer K, Johannsen O, Kondermann D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[J]. Computer Vision - ACCV, 2017, 19-34(2016).

[24] HanhartP, RerábekM, EbrahimiT. Subjective and objective evaluation of HDR video coding technologies[C]//2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), June 6-8, 2016, Lisbon, Portugal.New York: IEEE Press, 2016: 1- 6.

[25] Jeon HG, ParkJ, ChoeG, et al.Accurate depth map estimation from a lenslet light field camera[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA.New York: IEEE Press, 2015: 1547- 1555.

Please Enter Your Email: