Main > Journal of Infrared and Millimeter Waves >  Volume 38 >  Issue 1 >  Page 125 > Article
  • Abstract
  • Abstract
  • Figures (0)
  • Tables (0)
  • Equations (0)
  • References (10)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Apr. 3, 2018

    Accepted: --

    Posted: Mar. 19, 2019

    Published Online: Mar. 19, 2019

    The Author Email: Li ZHU (lizhu@ncu.edu.cn)

    DOI: 10.11972/j.issn.1001-9014.2019.01.019

  • Get Citation
  • Copy Citation Text

    ZHU Li, ZHANG Jing, FU Ying-Kai, SHEN Hui, ZHANG Shou-Feng, HONG Xiang-Gong. Infrared thermal image ROI extraction algorithm based on fusion of multi-modal feature maps[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 125

    Download Citation

  • Share
Journal of Infrared and Millimeter Waves, Vol. 38, Issue 1, 125 (2019)

Infrared thermal image ROI extraction algorithm based on fusion of multi-modal feature maps

Li ZHU*, Jing ZHANG, Ying-Kai FU, Hui SHEN, Shou-Feng ZHANG, and Xiang-Gong HONG

Author Affiliations

  • [in Chinese]

Abstract

Infrared thermal image region of interest (ROI) extraction has important significance for fault detection, target tracking and so on. In order to solve the problems of many infrared thermal image disturbances, artificial markers and low accuracy, a ROI of infrared thermal image extraction algorithm based on fusion of multi-modal feature map is proposed. Multi-modal feature maps are constructed by contrast, entropy, and gradient features, and region filling is performed to achieve ROI extraction. New algorithm is applied to actual collected photovoltaic solar panel image. Simulation results show that the proposed algorithm has high average precision (93.0553%), high average recall (902841%), F1 index and J index are better than Grab Cut, less artificial marks, etc.. It can be effectively used for ROI extraction of infrared thermal images.

keywords

Please Enter Your Email: