Main > Photonics Research >  Volume 8 >  Issue 8 >  Page 08001309 > Article
  • References
  • Abstract
  • Figures (7)
  • Tables (1)
  • Equations (0)
  • References (40)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Apr. 13, 2020

    Accepted: Jun. 5, 2020

    Posted: Jun. 8, 2020

    Published Online: Jul. 14, 2020

    The Author Email: Fang Liu (liu_fang@tsinghua.edu.cn)

    DOI: 10.1364/PRJ.394136

  • Get Citation
  • Copy Citation Text

    Mengxuan Wang, Fang Liu, Yuechai Lin, Kaiyu Cui, Xue Feng, Wei Zhang, Yidong Huang. Vortex Smith–Purcell radiation generation with holographic grating[J]. Photonics Research, 2020, 8(8): 08001309

    Download Citation

  • Category
  • Optoelectronics
  • Share

[1] S. J. Smith, E. M. Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

[2] D. Francia, G. Toraldo. On the theory of some Čerenkovian effects. Il Nuov. Cim., 16, 61-77(1960).

[3] K. Ishiguro, T. Tako. An estimation of Smith-Purcell effect as the light source in the infra-red region. Opt. Act., 8, 25-31(1961).

[4] P. M. Van den Berg. Smith-Purcell radiation from a line charge moving parallel to a reflection grating. J. Opt. Soc. Am., 63, 689-698(1973).

[5] K. Mizuno, S. Ono, O. Shimoe. Interaction between coherent light waves and free electrons with a reflection grating. Nature, 253, 184-185(1975).

[6] J. M. Wachtel. Free-electron lasers using the Smith-Purcell effect. J. Appl. Phys., 50, 49-56(1979).

[7] A. Gover, P. Dvorkis. Angular radiation pattern of Smith-Purcell radiation. J. Opt. Soc. Am. B, 1, 723-728(1984).

[8] G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, M. F. Kimmitt. First observation of Smith-Purcell radiation from relativistic electrons. Phys. Rev. Lett., 69, 1761-1764(1992).

[9] K. J. Woods, J. E. Walsh, R. E. Stoner, H. G. Kirk, R. C. Fernow. Forward directed Smith-Purcell radiation from relativistic electrons. Phys. Rev. Lett., 74, 3808-3811(1995).

[10] K. Ishi, Y. Shibata, T. Takahashi, S. Hasebe, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, Y. Fujita. Observation of coherent Smith-Purcell radiation from short-bunched electrons. Phys. Rev. E, 51, R5212-R5215(1995).

[11] J. Urata, M. Goldstein, M. F. Kimmitt, A. Naumov, C. Platt, J. E. Walsh. Superradiant Smith-Purcell emission. Phys. Rev. Lett., 80, 516-519(1998).

[12] H. L. Andrews, C. A. Brau. Gain of a Smith-Purcell free-electron laser. Phys. Rev. ST Accel. Beams, 7, 070701(2004).

[13] S. E. Korbly, A. S. Kesar, J. R. Sirigiri, R. J. Temkin. Observation of frequency-locked coherent terahertz Smith-Purcell radiation. Phys. Rev. Lett., 94, 054803(2005).

[14] G. Adam, K. F. MacDonald, N. I. Zheludev, Y. H. Fu, C. M. Wang, D. P. Tsai, F. J. GarciadeAbajo. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett., 103, 113901(2009).

[15] J. Gardelle, P. Modin, J. T. Donohue. Start current and gain measurements for a Smith-Purcell free-electron laser. Phys. Rev. Lett., 105, 224801(2010).

[16] Y. Yang, A. Massuda, C. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, M. Soljačić. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys., 14, 894-899(2018).

[17] Z. Wang, K. Yao, M. Chen, H. Chen, Y. Liu. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys. Rev. Lett., 117, 157401(2016).

[18] Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E. Kooi, K. Berggren, S. Marin. Manipulating Smith-Purcell radiation polarization with metasurfaces. CLEO: QELS_Fundamental Science, FW4H.1(2018).

[19] A. Massuda, C. Roques-Carmes, A. Solanki, Y. Yang, S. E. Kooi, F. Habbal, I. Kaminer, S. Marin. High-order Smith-Purcell radiation in silicon nanowires. CLEO: QELS_Fundamental Science, JTh5B.8(2017).

[20] R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljacic, I. Kaminer, A. Arie. Spectral and spatial shaping of Smith-Purcell radiation. Phys. Rev. A, 96, 061801(2017).

[21] A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K. Berggren, I. Kaminer, M. Soljačić. Smith-Purcell radiation from low-energy electrons. ACS Photon., 5, 3513-3518(2018).

[22] J. K. So, F. J. García de Abajo, K. F. MacDonald, N. I. Zheludev. Amplification of the evanescent field of free electrons. ACS Photon., 2, 1236-1240(2015).

[23] Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, W. Zhang, Y. Huang. Deep-ultraviolet Smith-Purcell radiation. Optica, 6, 592-597(2019).

[24] L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, H. Chen. Spiral field generation in Smith-Purcell radiation by helical metagratings. Research, 2019, 3806132(2019).

[25] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

[26] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

[27] K. Oyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

[28] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

[29] P. Schemmel, G. Pisano, B. Maffei. Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt. Express, 22, 14712-14726(2014).

[30] M. Kang, J. Chen, B. Gu, Y. Li, L. T. Vuong, H. T. Wang. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Phys. Rev. A, 85, 035801(2012).

[31] J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, Y. Zhang. Generation and evolution of the terahertz vortex beam. Opt. Express, 21, 20230-20239(2013).

[32] Y. Wang, X. Feng, D. Zhang, P. Zhao, X. Li, K. Cui, F. Liu, Y. Huang. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices. Sci. Rep., 5, 10958(2015).

[33] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, J. B. Rosenzweig. Coherent optical vortices from relativistic electron beams. Nat. Phys., 9, 549-553(2013).

[34] L. Xiao, J. Chen, L. Chen, Q. Zhang, L. Guo, M. Yang. Electron beam excited surface plasmon polaritons carrying orbital angular momentum. 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-3(2018).

[35] CollierR., Optical Holography (Elsevier, 2013).

[36] J. B. Götte, K. O’Holleran, D. Preece, F. Flossmann, S. Franke-Arnold, S. M. Barnett, M. J. Padgett. Light beams with fractional orbital angular momentum and their vortex structure. Opt. Express, 16, 993-1006(2008).

[37] F. Liu, L. Xiao, Y. Ye, M. Wang, K. Cui, X. Feng, W. Zhang, Y. Huang. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics, 11, 289-292(2017).

[38] A. Nicolas, L. Veissier, E. Giacobino, D. Maxein, J. Laurat. Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique. New J. Phys., 17, 033037(2015).

[39] H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 561-658(1980).

[40] K. H. Lee, I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, T. G. G. Hung. Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications. Prog. Electromagn. Res., 116, 441-456(2011).

Please Enter Your Email: