Main > Photonics Research >  Volume 8 >  Issue 9 >  Page 09001422 > Article
  • References
  • Abstract
  • Figures (6)
  • Tables (0)
  • Equations (2)
  • References (49)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jan. 22, 2020

    Accepted: Jul. 3, 2020

    Posted: Jul. 7, 2020

    Published Online: Aug. 7, 2020

    The Author Email: Jiangrui Gao (jrgao@sxu.edu.cn)

    DOI: 10.1364/PRJ.388956

  • Get Citation
  • Copy Citation Text

    Long Ma, Hui Guo, Hengxin Sun, Kui Liu, Bida Su, Jiangrui Gao. Generation of squeezed states of light in arbitrary complex amplitude transverse distribution[J]. Photonics Research, 2020, 8(9): 09001422

    Download Citation

  • Category
  • Quantum Optics
  • Share

[1] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik. Unconditional quantum teleportation. Science, 282, 706-709(1998).

[2] R. Raussendorf, H. J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86, 5188-5191(2001).

[3] G. Brida, M. Genovese, I. R. Berchera. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics, 4, 227-230(2010).

[4] V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun, 4, 2432(2013).

[5] M. P. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

[6] K. Liu, C. Cai, J. Li, L. Ma, H. Sun, J. Gao. Squeezing-enhanced rotating-angle measurement beyond the quantum limit. Appl. Phys. Lett., 113, 261103(2018).

[7] N. Treps, N. Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor, P. K. Lam. A quantum laser pointer. Science, 301, 940-943(2003).

[8] H. Sun, K. Liu, Z. Liu, P. Guo, J. Zhang, J. Gao. Small-displacement measurements using high-order Hermite-Gauss modes. Appl. Phys. Lett., 104, 121908(2014).

[9] M. Granata, C. Buy, R. Ward, M. Barsuglia. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors. Phys. Rev. Lett., 105, 231102(2010).

[10] P. Fulda, K. Kokeyama, S. Chelkowski, A. Freise. Experimental demonstration of higher-order Laguerre-Gauss mode interferometry. Phys. Rev. D, 82, 012002(2010).

[11] M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P. K. Lam, N. Treps, P. Buchhave, C. Fabre, C. Harb. Tools for multimode quantum information: modulation, detection, and spatial quantum correlations. Phys. Rev. Lett., 98, 083602(2007).

[12] M. Lassen, G. Leuchs, U. L. Andersen. Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett., 102, 163602(2009).

[13] M. Lassen, V. Delaubert, C. C. Harb, P. K. Lam, N. Treps, H. A. Bachor. Generation of squeezing in higher order Hermite–Gaussian modes with an optical parametric amplifier. J. Eur. Opt. Soc., 1, 06003(2006).

[14] J. Guo, C. Cai, L. Ma, K. Liu, H. Sun, J. Gao. Higher order mode entanglement in a type II optical parametric oscillator. Opt. Express, 25, 4985-4993(2017).

[15] C. Cai, L. Ma, J. Li, H. Guo, K. Liu, H. Sun, R. Yang, J. Gao. Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain. Photon. Res., 6, 479-484(2018).

[16] G. Alves, R. Barros, D. Tasca, C. Souza, A. Khoury. Conditions for optical parametric oscillation with a structured light pump. Phys. Rev. A, 98, 063825(2018).

[17] X. Fang, H. Yang, Y. Zhang, M. Xiao. Optical parametric amplification of a Laguerre-Gaussian mode. OSA Continuum, 2, 236-243(2019).

[18] N. Prajapati, N. Super, N. R. Lanning, J. P. Dowling, I. Novikova. Optical angular momentum manipulations in a four-wave mixing process. Opt. Lett., 44, 739-742(2019).

[19] B. C. Dos Santos, K. Dechoum, A. Khoury. Continuous-variable hyper entanglement in a parametric oscillator with orbital angular momentum. Phys. Rev. Lett., 103, 230503(2009).

[20] K. Liu, J. Guo, C. Cai, S. Guo, J. Gao. Experimental generation of continuous-variable hyper entanglement in an optical parametric oscillator. Phys. Rev. Lett., 113, 170501(2014).

[21] B. Chalopin, F. Scazza, C. Fabre, N. Treps. Direct generation of a multi-transverse mode non-classical state of light. Opt. Express, 19, 4405-4410(2011).

[22] C. Navarrete-Benlloch, G. J. de Valcárcel, E. Roldán. Generating highly squeezed hybrid Laguerre-Gauss modes in large-Fresnel-number degenerate optical parametric oscillators. Phys. Rev. A, 79, 043820(2009).

[23] B. Chalopin, F. Scazza, C. Fabre, N. Treps. Multimode nonclassical light generation through the optical-parametric-oscillator threshold. Phys. Rev. A, 81, 061804(2010).

[24] R. Rodrigues, J. Gonzales, B. P. da Silva, J. Huguenin, M. Martinelli, R. M. de Araújo, C. Souza, A. Khoury. Orbital angular momentum symmetry in a driven optical parametric oscillator. Opt. Lett., 43, 2486-2489(2018).

[25] V. Sharma, S. C. Kumar, G. K. Samanta, M. Ebrahim-Zadeh. Orbital angular momentum exchange in a picosecond optical parametric oscillator. Opt. Lett., 43, 3606-3609(2018).

[26] V. Sharma, A. Aadhi, G. K. Samanta. Controlled generation of vortex and vortex dipole from a Gaussian pumped optical parametric oscillator. Opt. Express, 27, 18123-18130(2019).

[27] J.-F. Morizur, S. Armstrong, N. Treps, J. Janousek, H.-A. Bachor. Spatial reshaping of a squeezed state of light. Eur. Phys. J. D, 61, 237-239(2011).

[28] J. P. Kirk, A. L. Jones. Phase-only complex-valued spatial filter. J. Opt. Soc. Am. A, 61, 1023-1028(1971).

[29] V. Arrizón. Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach. Opt. Lett., 28, 1359-1361(2003).

[30] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt., 38, 5004-5013(1999).

[31] V. Arrizón, U. Ruiz, R. Carrada, L. A. González. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

[32] A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, M. Ritsch-Marte. Near-perfect hologram reconstruction with a spatial light modulator. Opt. Express, 16, 2597-2603(2008).

[33] A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, M. Ritsch-Marte. Full phase and amplitude control of holographic optical tweezers with high efficiency. Opt. Express, 16, 4479-4486(2008).

[34] E. Bolduc, N. Bent, E. Santamato, E. Karimi, R. W. Boyd. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett., 38, 3546-3549(2013).

[35] L. Zhu, J. Wang. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Sci. Rep., 4, 7441(2014).

[36] D. Bowman, T. L. Harte, V. Chardonnet, C. De Groot, S. J. Denny, G. Le Goc, M. Anderson, P. Ireland, D. Cassettari, G. D. Bruce. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation. Opt. Express, 25, 11692-11700(2017).

[37] J. L. M. Fuentes, I. Moreno. Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays. Opt. Express, 26, 5875-5893(2018).

[38] M. Semmler, S. Berg-Johansen, V. Chille, C. Gabriel, P. Banzer, A. Aiello, C. Marquardt, G. Leuchs. Single-mode squeezing in arbitrary spatial modes. Opt. Express, 24, 7633-7642(2016).

[39] R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97-105(1983).

[40] ScullyM. O.ZubairyM. S., Quantum Optics (Cambridge University Press, 1999).

[41] X. Jin, J. Su, Y. Zheng, C. Chen, W. Wang, K. Peng. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 23, 23859-23866(2015).

[42] J. Yu, Y. Qin, Z. Yan, H. Lu, X. Jia. Improvement of the intensity noise and frequency stabilization of Nd:YAP laser with an ultra-low expansion Fabry-Perot cavity. Opt. Express, 27, 3247-3254(2019).

[43] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

[44] BornM.WolfE., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

[45] Y. Jiang, G. Ren, H. Li, M. Tang, Y. Liu, Y. Wu, W. Jian, S. Jian. Linearly polarized orbital angular momentum mode purity measurement in optical fibers. Appl. Opt., 56, 1990-1995(2017).

[46] M. Persson, D. Engström, M. Goksör. Reducing the effect of pixel crosstalk in phase only spatial light modulators. Opt. Express, 20, 22334-22343(2012).

[47] V. Chille, S. Berg-Johansen, M. Semmler, P. Banzer, A. Aiello, G. Leuchs, C. Marquardt. Experimental generation of amplitude squeezed vector beams. Opt. Express, 24, 12385-12394(2016).

[48] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, A. M. Weiner. Roadmap on structured light. J. Opt., 19, 013001(2016).

[49] S. Steinlechner, N.-O. Rohweder, M. Korobko, D. Töyrä, A. Freise, R. Schnabel. Mitigating mode-matching loss in nonclassical laser interferometry. Phys. Rev. Lett., 121, 263602(2018).

Please Enter Your Email: