Main > Advanced Photonics >  Volume 1 >  Issue 3 >  Page 036001 > Article
  • References
  • Abstract
  • Figures (5)
  • Tables (0)
  • Equations (0)
  • References (51)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Apr. 14, 2019

    Accepted: Jun. 1, 2019

    Posted: Jun. 19, 2019

    Published Online: Jun. 19, 2019

    The Author Email: Setzpfandt Frank (

    DOI: 10.1117/1.AP.1.3.036001

  • Get Citation
  • Copy Citation Text

    Chunqi Jin, Mina Afsharnia, René Berlich, Stefan Fasold, Chengjun Zou, Dennis Arslan, Isabelle Staude, Thomas Pertsch, Frank Setzpfandt. Dielectric metasurfaces for distance measurements and three-dimensional imaging[J]. Advanced Photonics, 2019, 1(3): 036001

    Download Citation

  • Category
  • Research Articles
  • Share

[1] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

[2] M. Decker, I. Staude. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt., 18, 103001(2016).

[3] P. Genevet, et al.. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

[4] S. M. Kamali, et al.. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

[5] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

[6] K. E. Chong, et al.. Efficient polarization-insensitive complex wavefront control using Huygens? Metasurfaces based on dielectric resonant meta-atoms. ACS Photonics, 3, 514-519(2016).

[7] M. Khorasaninejad, et al.. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

[8] L. Wang, et al.. Grayscale transparent metasurface holograms. Optica, 3, 1504-1505(2016).

[9] B. Wang, et al.. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

[10] L. Jin, et al.. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018).

[11] Y. Yang, et al.. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

[12] K. E. Chong, et al.. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett., 15, 5369-5374(2015).

[13] T. Stav, et al.. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

[14] M. Khorasaninejad, et al.. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 15, 5358-5362(2015).

[15] A. Arbabi, et al.. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express, 23, 33310-33317(2015).

[16] E. Arbabi, et al.. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

[17] E. Arbabi, et al.. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt. Express, 24, 18468-18477(2016).

[18] A. Zhan, et al.. Low-contrast dielectric metasurface optics. ACS Photonics, 3, 209-214(2016).

[19] M. P. Backlund, et al.. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photonics, 10, 459-462(2016).

[20] H. Zuo, et al.. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater., 5, 1700585(2017).

[21] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

[22] M. M. Shanei, et al.. Dielectric metalenses with engineered point spread function. Appl. Opt., 56, 8917-8923(2017).

[23] R. Paniagua-Dominguez, et al.. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

[24] S. M. Kamali, et al.. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 7, 11618(2016).

[25] S. M. Kamali, et al.. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev., 10, 1002-1008(2016).

[26] E. Arbabi, et al.. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

[27] B.Cyganek and J. P.Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms, John Wiley & Sons, Chippenham (2011).

[28] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

[29] H. Kwon, et al.. Computational complex optical field imaging using a designed metasurface diffuser. Optica, 5, 924-931(2018).

[30] Z. Yang, et al.. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun., 9, 4607(2018).

[31] R. J. Lin, et al.. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

[32] A. Greengard, Y. Y. Schechner, R. Piestun. Depth from diffracted rotation. Opt. Lett., 31, 181-183(2006).

[33] S. Quirin, R. Piestun. Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions. Appl. Opt., 52, A367-A376(2013).

[34] S. R. P. Pavani, A. Greengard, R. Piestun. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system. Appl. Phys. Lett., 95, 021103(2009).

[35] S. R. P. Pavani, J. G. DeLuca, R. Piestun. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Opt. Express, 17, 19644-19655(2009).

[36] S. R. P. Pavani, et al.. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. U.S.A., 106, 2995-2999(2009).

[37] R. Berlich, A. Bräuer, S. Stallinga. Single shot three-dimensional imaging using an engineered point spread function. Opt. Express, 24, 5946-5960(2016).

[38] R. Berlich, S. Stallinga. High-order-helix point spread functions for monocular three-dimensional imaging with superior aberration robustness. Opt. Express, 26, 4873-4891(2018).

[39] S. Jeon, et al.. Three-dimensional nanofabrication with rubber stamps and conformable photomasks. Adv. Mater., 16, 1369-1373(2004).

[40] B. Walther, et al.. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

[41] M. Khorasaninejad, et al.. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595-4600(2016).

[42] K. Wang, et al.. Quantum metasurface for multiphoton interference and state reconstruction. Science, 361, 1104-1108(2018).

[43] M. Decker, et al.. High-efficiency dielectric Huygens surfaces. Adv. Opt. Mater., 3, 813-820(2015).

[44] Z. Dong, et al.. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett., 17, 7620-7628(2017).

[45] A. Arbabi, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

[46] M. I. Shalaev, et al.. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 15, 6261-6266(2015).

[47] Y. F. Yu, et al.. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev., 9, 412-418(2015).

[48] A. J. Ollanik, et al.. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photonics, 5, 1351-1358(2018).

[49] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

[50] D. Arslan, et al.. Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D Appl. Phys., 50, 434002(2017).

[51] E. Betzig, et al.. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

Please Enter Your Email: