Main > Advanced Photonics >  Volume 2 >  Issue 3 >  Page 036004 > Article
  • References
  • Abstract
  • Figures (7)
  • Tables (1)
  • Equations (1)
  • References (54)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jan. 6, 2020

    Accepted: Apr. 23, 2020

    Posted: May. 29, 2020

    Published Online: May. 29, 2020

    The Author Email: Chen Jie (, Nitta Kazuki (, Zhao Xin (, Mizuno Takahiko (, Minamikawa Takeo (, Hindle Francis (Francis., Zheng Zheng (, Yasui Takeshi (

    DOI: 10.1117/1.AP.2.3.036004

  • Get Citation
  • Copy Citation Text

    Jie Chen, Kazuki Nitta, Xin Zhao, Takahiko Mizuno, Takeo Minamikawa, Francis Hindle, Zheng Zheng, Takeshi Yasui. Adaptive-sampling near-Doppler-limited terahertz dual-comb spectroscopy with a free-running single-cavity fiber laser[J]. Advanced Photonics, 2020, 2(3): 036004

    Download Citation

  • Category
  • Research Articles
  • Share

[1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

[2] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging: modern techniques and applications. Laser Photonics Rev., 5, 124-166(2011).

[3] K. Iwaszczuk, H. Heiselberg, P. U. Jepsen. Terahertz radar cross section measurements. Opt. Express, 18, 26399-26408(2010).

[4] D. H. Auston, et al.. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett., 53, 1555-1558(1984).

[5] P. Y. Han, X. C. Zhang. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol., 12, 1747-1756(2001).

[6] H. Harde, R. A. Cheville, D. Grischkowsky. Terahertz studies of collision-broadened rotational lines. J. Phys. Chem. A, 101, 3646-3660(1997).

[7] T. Q. Luong, et al.. Onset of hydrogen bonded collective network of water in 1,4-dioxane. J. Phys. Chem. A, 115, 14462-14469(2011).

[8] R. J. Falconer, A. G. Markelz. Terahertz spectroscopic analysis of peptides and proteins. J. Infrared. Millimeters Terahertz Waves, 33, 973-988(2012).

[9] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

[10] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

[11] T. Yasui, et al.. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett., 88, 241104(2006).

[12] T. Yasui, et al.. Fiber-based, hybrid terahertz spectrometer using dual fiber combs. Opt. Lett., 35, 1689-1691(2010).

[13] Y. Hsieh, et al.. Terahertz comb spectroscopy traceable to microwave frequency standard. IEEE Trans. Terahertz Sci. Technol., 3, 322-330(2013).

[14] G. Villares, et al.. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun., 5, 5192(2014).

[15] Y. Yang, et al.. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 3, 499-502(2016).

[16] Y. Ren, et al.. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz. Appl. Phys. Lett., 98, 231109(2011).

[17] J. T. Good, et al.. A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer. Rev. Sci. Instrum., 86, 103107(2015).

[18] T. Yasui, et al.. Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for lowpressure gas-phase analysis. Opt. Express, 20, 15071-15078(2012).

[19] X. Zhao, et al.. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Express, 19, 1168-1173(2011).

[20] X. Zhao, et al.. Polarization-multiplexed, dual-comb all-fiber mode-locked laser. Photonics Res., 6, 853-857(2018).

[21] Y. Liu, et al.. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser. Opt. Express, 24, 21392-21398(2016).

[22] T. Ideguchi, et al.. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 3, 748-753(2016).

[23] Q.-F. Yang, et al.. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560(2017).

[24] N. B. Hébert, et al.. Self-corrected chip-based dual-comb spectrometer. Opt. Express, 25, 8168-8179(2017).

[25] S. M. Link, et al.. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science, 356, 1164-1168(2017).

[26] R. M. Li, et al.. All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter. Opt. Express, 26, 28302-28311(2018).

[27] E. Lucas, et al.. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

[28] Y. Nakajima, Y. Hata, K. Minoshima. High-coherence ultra-broadband bidirectional dual-comb fiber laser. Opt. Express, 27, 5931-5944(2019).

[29] X. Zhao, et al.. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt. Express, 24, 21833-21845(2016).

[30] S. Mehravar, et al.. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett., 108, 231104(2016).

[31] R. Liao, et al.. Dual-comb spectroscopy with a single free-running thulium-doped fiber laser. Opt. Express, 26, 11046-11054(2018).

[32] J. Chen, et al.. Dual-comb spectroscopy of methane based on a free-running erbium-doped fiber laser. Opt. Express, 27, 11406-11412(2019).

[33] J. Nürnberg, et al.. An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene. Opt. Express, 27, 3190-3199(2019).

[34] G. Hu, et al.. Dual terahertz comb spectroscopy with a single free-running fiber laser. Sci. Rep., 8, 11155(2018).

[35] R. D. Baker, et al.. Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser. Sci. Rep., 8, 14802(2018).

[36] G. B. Rieker, et al.. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

[37] D. Burghoff, N. Han, J. H. Shin. Generalized method for the computational phase correction of arbitrary dual comb signals. Opt. Lett., 44, 2966-2969(2019).

[38] L. A. Sterczewski, et al.. Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser. APL Photonics, 4, 116102(2019).

[39] T. Yasui, et al.. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep., 5, 10786(2015).

[40] J. Roy, et al.. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express, 20, 21932(2012).

[41] G. Ycas, et al.. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018).

[42] G. Ycas, et al.. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica, 6, 165-168(2019).

[43] L. A. Sterczewski, J. Westberg, G. Wysocki. Computational coherent averaging for free-running dual-comb spectroscopy. Opt. Express, 27, 23875-23893(2019).

[44] N. B. Hébert, et al.. Self-correction limits in dual-comb interferometry. IEEE J. Quantum Electron., 55, 8700311(2019).

[45] C. Janke, et al.. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Opt. Lett., 30, 1405-1407(2005).

[46] T. Yasui, E. Saneyoshi, T. Araki. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett., 87, 061101(2005).

[47] H. G. Von Ribbeck, et al.. Spectroscopic THz near-field microscope. Opt. Express, 16, 3430-3438(2008).

[48] M. Kessler, et al.. Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide. Phys. Rev., 79, 54-56(1950).

[49] T. Yasui, et al.. Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation. Optica, 2, 460-467(2015).

[50] Y. D. Hsieh, et al.. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs. Sci. Rep., 4, 3816(2014).

[51] H. M. Pickett, et al.. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transfer, 60, 883-890(1998).

[52] A. S. Dudaryonok, N. N. Lavrentieva, J. V. Buldyreva. CH3CN self-broadening coefficients and their temperature dependences for the Earth and Titan atmospheres. Icarus, 250, 76-82(2015).

[53] A. S. Dudaryonok, N. N. Lavrentieva, J. V. Buldyreva. N2-broadening coefficients of CH3CN. Icarus, 256, 30-36(2015).

[54] S. Svanberg, M. W. Sigrist, J. D. Winefordner, I. M. Kolthoff. Differential absorption lidar (DIAL). Air Monitoring by Spectroscopic Techniques(1994).

Please Enter Your Email: