Main > Advanced Photonics >  Volume 1 >  Issue 1 >  Page 014001 > Article

[1] A. J. Ward, J. B. Pendry. Refraction and geometry in Maxwell’s Equations. J. Mod. Opt., 43, 773-793(1996).

[2] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

[3] N. B. Kundtz, D. R. Smith, J. B. Pendry. Electromagnetic design with transformation optics. Proc. IEEE, 99, 1622-1633(2011).

[4] J. B. Pendry, et al.. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

[5] J. B. Pendry, et al.. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47, 2075-2084(1999).

[6] D. R. Smith, et al.. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84, 4184-4187(2000).

[7] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

[8] S. A. Ramakrishna. Physics of negative refractive index materials. Rep. Prog. Phys., 68, 449-521(2005).

[9] Y. Luo. Transformation optics applied to plasmonics(2012).

[10] U. Leonhardt. Optical conformal mapping. Science, 312, 1777-1780(2006).

[11] S. A. Cummer, et al.. Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E, 74, 036621(2006).

[12] W. S. Cai, et al.. Optical cloaking with metamaterials. Nat. Photonics, 1, 224-227(2007).

[13] J. J. Zhang, Y. Luo, N. A. Mortensen. Minimizing the scattering of a nonmagnetic cloak. Appl. Phys. Lett., 96, 113511(2010).

[14] W. Cai, et al.. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett., 91, 111105(2007).

[15] D. Schurig, et al.. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

[16] S. Tretyakov, et al.. Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett., 103, 103905(2009).

[17] E. Semouchkina, et al.. An infrared invisibility cloak composed of glass. Appl. Phys. Lett., 96, 233503(2010).

[18] S. Xu, et al.. Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Phys. Rev. Lett., 109, 223903(2012).

[19] C. Li, X. Liu, F. Li. Experimental observation of invisibility to a broadband electromagnetic pulse by a cloak using transformation media based on inductor-capacitor networks. Phys. Rev. B, 81, 115133(2010).

[20] F. Gomory, et al.. Experimental realization of a magnetic cloak. Science, 335, 1466-1468(2012).

[21] S. Narayana, Y. Sato. DC magnetic cloak. Adv. Mater., 24, 71-74(2012).

[22] J. F. Zhu, et al.. Three-dimensional magnetic cloak working from d.c. to 250 kHz. Nat. Commun., 6, 8931(2015).

[23] Y. Luo, et al.. Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator. Phys. Rev. B, 78, 125108(2008).

[24] F. Yang, et al.. Dc electric invisibility cloak. Phys. Rev. Lett., 109, 053902(2012).

[25] T. C. Han, et al.. Manipulating DC currents with bilayer bulk natural materials. Adv. Mater., 26, 3478-3483(2014).

[26] M. Rahm, et al.. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct., 6, 87-95(2008).

[27] Y. Luo, et al.. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations. Phys. Rev. B, 77, 125127(2008).

[28] T. Yang, et al.. Superscatterer: enhancement of scattering with complementary media. Opt. Express, 16, 18545-18550(2008).

[29] W. H. Wee, J. B. Pendry. Shrinking optical devices. New J. Phys., 11, 073033(2009).

[30] Y. Luo, et al.. High-directivity antenna with small antenna aperture. Appl. Phys. Lett., 95, 193506(2009).

[31] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

[32] M. Yan, W. Yan, M. Qiu. Cylindrical superlens by a coordinate transformation. Phys. Rev. B, 78, 125113(2008).

[33] H. Y. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387-396(2010).

[34] W. H. Wee, Y. J. Ye, Y. Luo. Towards a practical compact magnifying superlens-a simple simplical design. J. Opt. UK, 18, 044011(2016).

[35] Y. Lai, et al.. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett., 102, 253902(2009).

[36] W. X. Jiang, et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Adv. Mater., 25, 6963-6968(2013).

[37] C. Li, et al.. Experimental realization of a circuit-based broadband illusion-optics analogue. Phys. Rev. Lett., 105, 233906(2010).

[38] W. X. Jiang, T. J. Cui. Radar illusion via metamaterials. Phys. Rev. E, 83, 026601(2011).

[39] Z. Chang, et al.. Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt. Express, 18, 6089-6096(2010).

[40] J. Li, J. B. Pendry. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett., 101, 203901(2008).

[41] B. L. Zhang, T. Chan, B. I. Wu. Lateral shift makes a ground-plane cloak detectable. Phys. Rev. Lett., 104, 233903(2010).

[42] R. Liu, et al.. Broadband ground-plane cloak. Science, 323, 366-369(2009).

[43] H. F. Ma, T. J. Cui. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun., 1, 21(2010).

[44] H. F. Ma, et al.. Compact-sized and broadband carpet cloak and free-space cloak. Opt. Express, 17, 19947-19959(2009).

[45] J. Valentine, et al.. An optical cloak made of dielectrics. Nat. Mater., 8, 568-571(2009).

[46] L. H. Gabrielli, et al.. Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics, 3, 461-463(2009).

[47] T. Ergin, et al.. Three-dimensional invisibility cloak at optical wavelengths. Science, 328, 337-339(2010).

[48] V. A. Tamma, et al.. Dispersion characteristics of silicon nanorod based carpet cloaks. Opt. Express, 18, 25746-25756(2010).

[49] M. Gharghi, et al.. A carpet cloak for visible light. Nano Lett., 11, 2825-2828(2011).

[50] T. Ergin, J. Fischer, M. Wegener. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Phys. Rev. Lett., 107, 173901(2011).

[51] Y. Luo, et al.. A rigorous analysis of plane-transformed invisibility cloaks. IEEE Trans. Antennas Propag., 57, 3926-3933(2009).

[52] S. Xi, et al.. One-directional perfect cloak created with homogeneous material. IEEE Microwave Wireless Compon. Lett., 19, 131-133(2009).

[53] X. Z. Chen, et al.. Macroscopic invisibility cloaking of visible light. Nat. Commun., 2, 176(2011).

[54] B. L. Zhang, et al.. Macroscopic invisibility cloak for visible light. Phys. Rev. Lett., 106, 033901(2011).

[55] D. C. Liang, et al.. Robust large dimension terahertz cloaking. Adv. Mater., 24, 916-921(2012).

[56] J. Zhang, et al.. Homogeneous optical cloak constructed with uniform layered structures. Opt Express, 19, 8625-8631(2011).

[57] X. F. Xu, et al.. Broad band invisibility cloak made of normal dielectric multilayer. Appl. Phys. Lett., 99, 154104(2011).

[58] B. I. Popa, L. Zigoneanu, S. A. Cummer. Experimental acoustic ground cloak in air. Phys. Rev. Lett., 106, 253901(2011).

[59] L. Zigoneanu, B. I. Popa, S. A. Cummer. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater., 13, 352-355(2014).

[60] N. Landy, D. R. Smith. A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater., 12, 25-28(2013).

[61] W. Li, et al.. A near-perfect invisibility cloak constructed with homogeneous materials. Opt. Express, 17, 23410-23416(2009).

[62] J. J. Zhang, Y. Luo, N. A. Mortensen. Transmission of electromagnetic waves through sub-wavelength channels. Opt. Express, 18, 3864-3870(2010).

[63] Y. K. Wang, et al.. Waveguide devices with homogeneous complementary media. Opt. Lett., 36, 3855-3857(2011).

[64] H. Y. Xu, et al.. Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics. J. Opt. Soc. Am. B, 29, 1287-1290(2012).

[65] J. J. Zhang, et al.. Surface plasmon wave adapter designed with transformation optics. ACS Nano, 5, 4359-4364(2011).

[66] J. B. Pendry, et al.. Transformation optics and subwavelength control of light. Science, 337, 549-552(2012).

[67] Y. Luo, et al.. Harvesting light with transformation optics. Sci. China Inf. Sci., 56, 1-13(2013).

[68] R. K. Zhao, Y. Luo, J. B. Pendry. Transformation optics applied to van der Waals interactions. Sci. Bull., 61, 59-67(2016).

[69] J. B. Pendry, Y. Luo, R. K. Zhao. Transforming the optical landscape. Science, 348, 521-524(2015).

[70] Y. Luo, J. B. Pendry, A. Aubry. Surface plasmons and singularities. Nano Lett., 10, 4186-4191(2010).

[71] A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry. Collection and concentration of light by touching spheres: a transformation optics approach. Phys. Rev. Lett., 105, 266807(2010).

[72] J. J. Zhang, A. Zayats. Multiple fano resonances in single-layer nonconcentric core-shell nanostructures. Opt. Express, 21, 8426-8436(2013).

[73] R. C. Mcphedran, W. T. Perrins. Electrostatic and optical resonances of cylinder pairs. Appl. Phys., 24, 311-318(1981).

[74] R. C. Mcphedran, G. W. Milton. Transport-properties of touching cylinder pairs and of the square array of touching cylinders. Proc. R. Soc. London, Ser. A, 411, 313-326(1987).

[75] A. Aubry, et al.. Broadband plasmonic device concentrating the energy at the nanoscale: the crescent-shaped cylinder. Phys. Rev. B, 82, 125430(2010).

[76] D. Y. Lei, et al.. Broadband nano-focusing of light using kissing nanowires. New J. Phys., 12, 093030(2010).

[77] A. Aubry, et al.. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. ACS Nano, 5, 3293-3308(2011).

[78] D. Y. Lei, et al.. Plasmonic interaction between overlapping nanowires. ACS Nano, 5, 597-607(2011).

[79] Y. Luo, A. Aubry, J. B. Pendry. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach. Phys. Rev. B, 83, 155422(2011).

[80] A. Aubry, et al.. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett., 10, 2574-2579(2010).

[81] A. Aubry, et al.. Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys. Rev. B, 82, 205109(2010).

[82] A. Aubry, et al.. Interaction between plasmonic nanoparticles revisited with transformation optics. Phys. Rev. Lett., 105, 233901(2010).

[83] Y. Luo, et al.. Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett., 108, 023901(2012).

[84] Y. Luo, et al.. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. ACS Nano, 6, 6492-6506(2012).

[85] D. Y. Lei, et al.. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano, 6, 1380-1386(2012).

[86] S. M. Hanham, et al.. Broadband terahertz plasmonic response of touching InSb disks. Adv. Mater., 24, OP226-OP230(2012).

[87] G. C. Li, et al.. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement. ACS Nano, 11, 3067-3080(2017).

[88] A. I. Fernandez-Dominguez, et al.. Transformation-optics insight into nonlocal effects in separated nanowires. Phys. Rev. B, 86, 241110(2012).

[89] A. I. Fernandez-Dominguez, et al.. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett., 108, 023901(2012).

[90] Y. Luo, et al.. Surface plasmons and nonlocality: a simple model. Phys. Rev. Lett., 111, 093901(2013).

[91] C. Ciraci, et al.. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072-1074(2012).

[92] A. Wiener, et al.. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. ACS Nano, 7, 6287-6296(2013).

[93] Y. D. Zhao, et al.. Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain. Nanoscale, 6, 1311-1317(2014).

[94] M. Kraft, et al.. Transformation optics and hidden symmetries. Phys. Rev. B, 89, 245125(2014).

[95] P. A. Huidobro, et al.. Hidden symmetries in plasmonic gratings. Phys. Rev. B, 95, 155401(2017).

[96] M. Kraft, et al.. Designing plasmonic gratings with transformation optics. Phys. Rev. X, 5, 031029(2015).

[97] J. A. Schuller, et al.. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

[98] L. Xu, H. Y. Chen. Conformal transformation optics. Nat. Photonics, 9, 15-23(2015).

[99] A. I. Fernandez-Dominguez, et al.. Theory of three-dimensional nanocrescent light harvesters. Nano Lett., 12, 5946-5953(2012).

[100] J. B. Pendry, et al.. Capturing photons with transformation optics. Nat. Phys., 9, 518-522(2013).

[101] Y. Luo, R. K. Zhao, J. B. Pendry. Van der Waals interactions at the nanoscale: the effects of nonlocality. Proc. Natl. Acad. Sci. U. S. A., 111, 18422-18427(2014).

[102] E. Prodan, et al.. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

[103] P. Nordlander, et al.. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

[104] E. Prodan, P. Nordlander. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys., 120, 5444-5454(2004).

[105] B. Willingham, D. W. Brandl, P. Nordlander. Plasmon hybridization in nanorod dimers. Appl. Phys. B-Lasers Opt., 93, 209-216(2008).

[106] A. W. Rodriguez, F. Capasso, S. G. Johnson. The Casimir effect in microstructured geometries. Nat. Photonics, 5, 211-221(2011).

[107] T. Emig, et al.. Casimir forces between arbitrary compact objects. Phys. Rev. Lett., 99, 170403(2007).

[108] G. Bimonte, T. Emig. Exact results for classical casimir interactions: dirichlet and drude model in the sphere-sphere and sphere-plane geometry. Phys. Rev. Lett., 109, 160403(2012).

[109] K. Kim, et al.. Radiative heat transfer in the extreme near field. Nature, 528, 387-391(2015).

[110] B. Song, et al.. Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat. Nanotechnol., 10, 253-258(2015).

[111] J. B. Pendry. Shearing the vacuum—quantum friction. J. Phys. Condens. Matter, 9, 10301-10320(1997).

[112] R. Zhao, et al.. Description of van der Waals interactions using transformation optics. Phys. Rev. Lett., 111, 033602(2013).

[113] J. B. Pendry, et al.. Compacted dimensions and singular plasmonic surfaces. Science, 358, 915-917(2017).

[114] F. Yang, P. A. Huidobro, J. B. Pendry. Transformation optics approach to singular metasurfaces. Phys. Rev. B, 98, 125409(2018).

[115] E. Galiffi, J. B. Pendry, P. A. Huidobro. Broadband tunable THz absorption with singular graphene metasurfaces. ACS Nano, 12, 1006-1013(2018).

[116] H. Y. Chen, C. T. Chan. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett., 91, 183518(2007).

[117] S. A. Cummer, et al.. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett., 100, 024301(2008).

[118] S. Zhang, C. G. Xia, N. Fang. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett., 106, 024301(2011).

[119] M. Farhat, S. Guenneau, S. Enoch. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett., 103, 024301(2009).

[120] N. Stenger, M. Wilhelm, M. Wegener. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett., 108, 014301(2012).

[121] T. Buckmann, et al.. Mechanical cloak design by direct lattice transformation. Proc. Natl. Acad. Sci. U. S. A., 112, 4930-4934(2015).

[122] S. Zhang, et al.. Cloaking of matter waves. Phys. Rev. Lett., 100, 123002(2008).

[123] R. Schittny, et al.. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett., 110, 195901(2013).

[124] T. C. Han, et al.. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mater., 26, 1731-1734(2014).