Main > Advanced Photonics >  Volume 2 >  Issue 6 >  Page 064001 > Article
  • References
  • Abstract
  • Figures (15)
  • Tables (0)
  • Equations (0)
  • References (291)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Aug. 6, 2020

    Accepted: Sep. 25, 2020

    Posted: Nov. 10, 2020

    Published Online: Nov. 6, 2020

    The Author Email: Xiong Yifeng (, Xu Fei (

    DOI: 10.1117/1.AP.2.6.064001

  • Get Citation
  • Copy Citation Text

    Yifeng Xiong, Fei Xu. Multifunctional integration on optical fiber tips: challenges and opportunities[J]. Advanced Photonics, 2020, 2(6): 064001

    Download Citation

  • Category
  • Reviews
  • Share

[1] Abouraddy A. F., et al.. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater., 6, 336-347(2007).

[2] Bayindir M., et al.. Integrated fibres for self-monitored optical transport. Nat. Mater., 4, 820-825(2005).

[3] Shapira O., et al.. Surface-emitting fiber lasers. Opt. Express, 14, 3929-3935(2006).

[4] Bedeloglu A., et al.. A photovoltaic fiber design for smart textiles. Text. Res. J., 80, 1065-1074(2009).

[5] Podoliak N., et al.. Design of dual-core optical fibers with NEMS functionality. Opt. Express, 22, 1065-1076(2014).

[6] Canales A., et al.. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 33, 277-284(2015).

[7] Egusa S., et al.. Multimaterial piezoelectric fibres. Nat. Mater., 9, 643-648(2010).

[8] Fokine M., et al.. Integrated fiber Mach–Zehnder interferometer for electro-optic switching. Opt. Lett., 27, 1643-1645(2002).

[9] Yan W., et al.. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt. Mater. Express, 7, 1388-1397(2017).

[10] Yan W., et al.. Semiconducting nanowire-based optoelectronic fibers. Adv. Mater., 29, 1700681(2017).

[11] Yan W., et al.. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater., 31, 1802348(2019).

[12] Yan W., et al.. Thermally drawn advanced functional fibers: new Frontier of flexible electronics. Mater. Today, 35, 168-194(2020).

[13] Tong L., et al.. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

[14] Chen J.-H., Li D.-R., Xu F.. Optical microfiber sensors: sensing mechanisms, and recent advances. J. Lightwave Technol., 37, 2577-2589(2019).

[15] Pawar D., Kale S. N.. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochim. Acta, 186, 253(2019).

[16] Chen H., et al.. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev., 5, 011102(2018).

[17] Lee E. J., et al.. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 6, 6851(2015).

[18] Zapata J. D., et al.. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep., 6, 20644(2016).

[19] Kou J. L., et al.. Microfiber-based Bragg gratings for sensing applications: a review. Sensors, 12, 8861-8876(2012).

[20] Pissadakis S.. Lab-in-a-fiber sensors: a review. Microelectron. Eng., 217, 111105(2019).

[21] Pisco M., Cusano A.. Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms. Sensors, 20, 4705(2020).

[22] Wang Q., Wang L.. Lab-on-fiber: plasmonic nano-arrays for sensing. Nanoscale, 12, 7485-7499(2020).

[23] Vaiano P., et al.. Lab on fiber technology for biological sensing applications. Laser Photonics Rev., 10, 922-961(2016).

[24] Ricciardi A., et al.. Lab-on-fiber technology: a new vision for chemical and biological sensing. Analyst, 140, 8068-8079(2015).

[25] Kostovski G., Stoddart P. R., Mitchell A.. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Adv. Mater., 26, 3798-3820(2014).

[26] Consales M., Pisco M., Cusano A.. Lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors, 2, 289-314(2012).

[27] He R., et al.. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics, 6, 174-179(2012).

[28] Abouraddy A. F., et al.. Large-scale optical-field measurements with geometric fibre constructs. Nat. Mater., 5, 532-536(2006).

[29] Raabe R., et al.. No enhancement of fusion probability by the neutron halo of He6. Nature, 431, 823-826(2004).

[30] Temelkuran B., et al.. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 420, 650-653(2002).

[31] S. A.Maier, Plasmonics: Fundamentals and Applications, Springer (2007).

[32] Mullen K. I., Carron K. T.. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes. Anal. Chem., 63, 2196-2199(1991).

[33] Viets W. H. C.. Comparison of fibre-optic SERS sensors with differently prepared tips. Sens. Actuators B, 51, 92-99(1998).

[34] Grosjean T., et al.. Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams. Appl. Opt., 46, 8061-8067(2007).

[35] Li C., et al.. Manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution. Adv. Opt. Mater., 5, 1700630(2017).

[36] Xiong Y.-F., et al.. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism. Adv. Electron. Mater., 5, 1800562(2019).

[37] Xiong Y., et al.. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater., 32, 1907242(2020).

[38] Chen J. H., et al.. Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale, 9, 3424-3428(2017).

[39] Bruno F. A., et al.. Opto-mechanical lab-on-fiber accelerometers. J. Lightwave Technol., 38, 1998-2009(2020).

[40] Beekmans S. V., et al.. Minimally invasive micro-indentation: mapping tissue mechanics at the tip of an 18G needle. Sci. Rep., 7, 11364(2017).

[41] van Hoorn H., et al.. Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation. Soft Matter, 12, 3066-3073(2016).

[42] Pisco M., et al.. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake. Sci. Rep., 8, 6680(2018).

[43] Rauch J.-Y., et al.. Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the μRobotex nanofactory. J. Vac. Sci. Technol. A, 36, 041601(2018).

[44] Guo F., et al.. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett., 37, 1505-1507(2012).

[45] Ma J., et al.. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett., 37, 2493-2495(2012).

[46] Wang Y., et al.. Compressible fiber optic micro-Fabry–Perot cavity with ultra-high pressure sensitivity. Opt. Express, 21, 14084-14089(2013).

[47] Xu J., et al.. Suppression of parasitic interference in a fiber-tip Fabry–Perot interferometer for high-pressure measurements. Opt. Express, 26, 28178-28186(2018).

[48] Yizheng Z., Anbo W.. Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett., 17, 447-449(2005).

[49] Liu Z.-Y., Cao H.-Q., Xu F.. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane. Appl. Phys. Lett., 112, 203504(2018).

[50] Zhao Y., et al.. Optical fiber axial contact force sensor based on bubble-expanded Fabry–Pérot interferometer. Sens. Actuators A, 272, 318-324(2018).

[51] Fan K.-C., et al.. Experimental study of fabricating a microball tip on an optical fibre. J. Opt. A Pure Appl. Opt., 8, 782-787(2006).

[52] Collot L., et al.. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhys. Lett., 23, 327-334(1993).

[53] Gorodetsky M. L., Savchenkov A. A., Ilchenko V. S.. Ultimate Q of optical microsphere resonators. Opt. Lett., 21, 453-455(1996).

[54] Kimura M., Toshima K.. Vibration sensor using optical-fiber cantilever with bulb-lens. Sens. Actuators A, 66, 178-183(1998).

[55] Laine J., Little B. E., Haus H. A.. Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres. IEEE Photonics Technol. Lett., 11, 1429-1430(1999).

[56] Eah S.-K., Jhe W., Arakawa Y.. Nearly diffraction-limited focusing of a fiber axicon microlens. Rev. Sci. Instrum., 74, 4969-4971(2003).

[57] Kbashi H. J.. Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol., 28, 308-312(2012).

[58] Saiki T., et al.. Tailoring a high-transmission fiber probe for photon scanning tunneling microscope. Appl. Phys. Lett., 68, 2612-2614(1996).

[59] Eisenstein G., Vitello D.. Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers. Appl. Opt., 21, 3470-3474(1982).

[60] Yatsui T., Kourogi M., Ohtsu M.. Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure. Appl. Phys. Lett., 73, 2090-2092(1998).

[61] Saiki T., Matsuda K.. Near-field optical fiber probe optimized for illumination–collection hybrid mode operation. Appl. Phys. Lett., 74, 2773-2775(1999).

[62] Hoffmann P., Dutoit B., Salathe R.-P.. Comparison of mechanically drawn and protection layer chemically etchedoptical fiber tips. Ultramicroscopy, 61, 165-170(1995).

[63] Mondal S. K., et al.. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action. Opt. Express, 17, 19470-19475(2009).

[64] Maruyama K., et al.. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal. Chem., 78, 1904-1912(2006).

[65] Wang Z., et al.. Optically addressable array of optomechanically compliant glass nanospikes on the endface of a soft-glass photonic crystal fiber. ACS Photonics, 6, 2942-2948(2019).

[66] White D. J., Stoddart P. R.. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt. Lett., 30, 598-600(2005).

[67] Zheng B.-C., et al.. Miniature optical fiber current sensor based on a graphene membrane. Laser Photonics Rev., 9, 517-522(2015).

[68] Cabrini S., et al.. Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling. Microelectron. Eng., 83, 804-807(2006).

[69] Schiappelli F.. Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling. Microelectron. Eng., 73-74, 397-404(2004).

[70] Iannuzzi D., et al.. Fiber-top atomic force microscope. Rev. Sci. Instrum., 77, 106105(2006).

[71] Iannuzzi D., et al.. Monolithic fiber-top sensor for critical environments and standard applications. Appl. Phys. Lett., 88, 053501(2006).

[72] Liberale C., et al.. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photonics, 1, 723-727(2007).

[73] Andrade G. F. S., et al.. Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips. Plasmonics, 8, 1113-1121(2013).

[74] Kang S., et al.. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl. Phys. Lett., 98, 241103(2011).

[75] Zhao Y.. All-fiber vibration sensor based on nano-wire grid polarizer. Opt. Eng., 51, 050504(2012).

[76] Dhawan A., Muth J. F.. Engineering surface plasmon based fiber-optic sensors. Mater. Sci. Eng. B, 149, 237-241(2008).

[77] Dhawan A., Gerhold M. D., Muth J. F.. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens. J., 8, 942-950(2008).

[78] Principe M., et al.. Optical fiber meta-tips. Light Sci. Appl., 6, e16226(2017).

[79] Savinov V., Zheludev N. I.. High-quality metamaterial dispersive grating on the facet of an optical fiber. Appl. Phys. Lett., 111, 091106(2017).

[80] Micco A., et al.. Optical fiber tip templating using direct focused ion beam milling. Sci. Rep., 5, 15935(2015).

[81] Shin W., et al.. Microstructured fiber end surface grating for coarse WDM signal monitoring. IEEE Photonics Technol. Lett., 19, 550-552(2007).

[82] Kim J. K., et al.. Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system. IEEE Photonics Technol. Lett., 21, 21-23(2009).

[83] Lan X., et al.. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt. Lett., 34, 2285-2287(2009).

[84] Ma X., et al.. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser. Sensors, 10, 11064-11071(2010).

[85] Lin Y., Guo J., Lindquist R. G.. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Opt. Express, 17, 17849-17854(2009).

[86] Lin Y., et al.. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors, 10, 9397-9406(2010).

[87] Sanders M., et al.. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron., 61, 95-101(2014).

[88] Consales M., et al.. Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano, 6, 3163-3170(2012).

[89] Feng S., et al.. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small, 8, 1937-1944(2012).

[90] Sasaki M., et al.. Direct photolithography on optical fiber end. Jpn. J. Appl. Phys., 41, 4350-4355(2002).

[91] Johnson E. G., et al.. Fabrication of micro optics on coreless fiber segments. Appl. Opt., 42, 785-791(2003).

[92] Petrušis A., et al.. The align-and-shine technique for series production of photolithography patterns on optical fibres. J. Micromech. Microeng., 19, 047001(2009).

[93] Kim J. B., Jeong K. H.. Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography. Opt. Express, 25, 16854-16859(2017).

[94] Choi S., et al.. Interferometric inscription of surface relief gratings on optical fiber using azo polymer film. Appl. Phys. Lett., 83, 1080-1082(2003).

[95] Feng S., et al.. Fiber coupled waveguide grating structures. Appl. Phys. Lett., 96, 133101(2010).

[96] Yang X., et al.. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Opt. Express, 20, 24819-24826(2012).

[97] Chandrappan J., et al.. Optical coupling methods for cost-effective polymer optical fiber communication. IEEE Trans. Compon. Packag. Technol., 32, 593-599(2009).

[98] Florea C., et al.. Reduced Fresnel losses in chalcogenide fibers obtained through fiber-end microstructuring. Appl. Opt., 50, 17-21(2011).

[99] Sanghera J., et al.. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. Opt. Express, 18, 26760-26768(2010).

[100] Volkov A. V., et al.. Studying fabrication errors of the diffraction grating on the end face of a silver-halide fiber. Opt. Memory Neural Networks, 16, 263-268(2007).

[101] Sakata H., Imada A.. Lensed plastic optical fiber employing concave end filled with high-index resin. J. Lightwave Technol., 20, 638-642(2002).

[102] Kostovski G., et al.. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens. Bioelectron., 24, 1531-1535(2009).

[103] Viheriälä J., et al.. Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography. Electron. Lett., 43, 150-151(2007).

[104] Scheerlinck S., et al.. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. J. Lightwave Technol., 27, 1415-1420(2009).

[105] Kanamori Y., Okochi M., Hane K.. Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography. Opt. Express, 21, 322-328(2013).

[106] Scheerlinck S., et al.. Flexible metal grating based optical fiber probe for photonic integrated circuits. Appl. Phys. Lett., 92, 031104(2008).

[107] Calafiore G., et al.. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation. Nanotechnology, 27, 375301(2016).

[108] Calafiore G., et al.. Campanile near-field probes fabricated by nanoimprint lithography on the facet of an optical fiber. Sci. Rep., 7, 1651(2017).

[109] Kostovski G., et al.. Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv. Mater., 23, 531-535(2011).

[110] Prasciolu M., et al.. Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography. Microelectron. Eng., 67-68, 169-174(2003).

[111] Ricciardi A., et al.. Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol., 19, 772-784(2013).

[112] Ricciardi A., et al.. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices. ACS Photonics, 1, 69-78(2013).

[113] Lin Y., Zou Y., Lindquist R. G.. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed. Opt. Express, 2, 478-484(2011).

[114] Huang Z., et al.. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interfaces, 7, 17247-17254(2015).

[115] Palma P. D., et al.. Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe. IEEE Photonics J., 9, 7102511(2017).

[116] Galeotti F., Pisco M., Cusano A.. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation ‘lab-on-fiber’ optrodes. Nanoscale, 10, 22673-22700(2018).

[117] Jeong H. H., et al.. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens. Bioelectron., 39, 346-351(2013).

[118] Sciacca B., Monro T. M.. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir, 30, 946-954(2014).

[119] Liu Y., et al.. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus. Nanoscale, 8, 10607-10614(2016).

[120] Yap F. L., et al.. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano, 6, 2056-2070(2012).

[121] Pisco M., et al.. Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips. ACS Photonics, 1, 917-927(2014).

[122] Pisco M., et al.. Nanosphere lithography for optical fiber tip nanoprobes. Light Sci. Appl., 6, e16229(2017).

[123] Antohe I., et al.. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology, 28, 215301(2017).

[124] Quero G., et al.. Nanosphere lithography on fiber: towards engineered lab-on-fiber SERS optrodes. Sensors, 18, 680(2018).

[125] Rabeau J. R., et al.. Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl. Phys. Lett., 86, 134104(2005).

[126] Chen H., et al.. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett., 42, 4279-4282(2017).

[127] Huang C., et al.. Fabrication of high-temperature temperature sensor based on dielectric multilayer film on sapphire fiber tip. Sens. Actuators A, 232, 99-102(2015).

[128] Lee D. W., et al.. Sapphire fiber high-temperature tip sensor with multilayer coating. IEEE Photonics Technol. Lett., 27, 741-743(2015).

[129] Tan D., et al.. Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett., 90, 071106(2007).

[130] Malinauskas M., et al.. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

[131] Williams H. E., et al.. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Opt. Express, 19, 22910-22922(2011).

[132] Gissibl T., et al.. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun., 7, 11763(2016).

[133] Hahn V., et al.. Polarizing beam splitter integrated onto an optical fiber facet. Opt. Express, 26, 33148-33157(2018).

[134] Liberale C., et al.. Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol. Lett., 22, 474-476(2010).

[135] Malinauskas M., et al.. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J. Opt., 12, 124010(2010).

[136] Malinauskas M., et al.. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Opt. Lasers Eng., 50, 1785-1788(2012).

[137] Bianchi S., et al.. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt. Lett., 38, 4935-4938(2013).

[138] Kowalczyk M., Haberko J., Wasylczyk P.. Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing. Opt. Express, 22, 12545-12550(2014).

[139] Huang H., et al.. Fabrication of micro-axicons using direct-laser writing. Opt. Express, 22, 11035-11042(2014).

[140] Gissibl T., Schmid M., Giessen H.. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica, 3, 448-451(2016).

[141] Wei H., Chen M., Krishnaswamy S.. Three-dimensional-printed Fabry–Perot interferometer on an optical fiber tip for a gas pressure sensor. Appl. Opt., 59, 2173-2178(2020).

[142] Gissibl T., et al.. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

[143] Xie Z., et al.. Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber. Adv. Opt. Mater., 3, 1232-1239(2015).

[144] Wang H., et al.. A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm. Opt. Laser Technol., 78, 110-115(2016).

[145] Kim J. A., et al.. Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria. Adv. Opt. Mater., 8, 1901934(2020).

[146] Zhang S., et al.. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Adv. Opt. Mater., 7, 1900602(2019).

[147] Liu Q., et al.. ‘Optical tentacle’ of suspended polymer micro-rings on a multicore fiber facet for vapor sensing. Opt. Express, 28, 11730-11741(2020).

[148] Yao M., et al.. Optical 3D μ-printing of ferrule-top polymer suspended-mirror devices. IEEE SENSORS(2016).

[149] Wu J., et al.. In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid). Sens. Actuators B, 259, 833-839(2018).

[150] Yao M., et al.. Optically 3-D μ-printed ferrule-top polymer suspended-mirror devices. IEEE Sens. J., 17, 7257-7261(2017).

[151] Yao M., et al.. Optical fiber-tip sensors based on in-situ micro-printed polymer suspended-microbeams. Sensors, 18, 1825(2018).

[152] Soppera O., Turck C., Lougnot D. J.. Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR. Opt. Lett., 34, 461-463(2009).

[153] Soppera O., Jradi S., Lougnot D. J.. Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters. J. Polymer Sci. Part A, 46, 3783-3794(2008).

[154] Bachelot R., et al.. Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization. Appl. Opt., 40, 5860-5871(2001).

[155] Hocine M., et al.. End-of-fiber polymer tip: manufacturing and modeling. Synth. Met., 127, 313-318(2002).

[156] Xiao L., et al.. Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers. Opt. Lett., 31, 1791-1793(2006).

[157] Pang C., et al.. Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides. Opt. Express, 17, 6939-6945(2009).

[158] Valkai S., Oroszi L., Ormos P.. Optical tweezers with tips grown at the end of fibers by photopolymerization. Appl. Opt., 48, 2880-2883(2009).

[159] Shi C., et al.. A double substrate ‘sandwich’ structure for fiber surface enhanced Raman scattering detection. Appl. Phys. Lett., 92, 103107(2008).

[160] Bao Q., et al.. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

[161] Wu K., et al.. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited). Opt. Commun., 406, 214-229(2018).

[162] Wang F., et al.. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

[163] Set S. Y., et al.. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quantum Electron., 10, 137-146(2004).

[164] Chen J.-H., et al.. High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3–graphene hybrid structure. Optica, 4, 835-838(2017).

[165] Calero V., et al.. An ultra wideband-high spatial resolution-compact electric field sensor based on lab-on-fiber technology. Sci. Rep., 9, 8058(2019).

[166] Smythe E. J., et al.. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett., 9, 1132-1138(2009).

[167] Smythe E. J., et al.. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano, 3, 59-65(2009).

[168] Lipomi D. J., et al.. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving. Nano Lett., 11, 632-636(2011).

[169] Jung I. W., et al.. Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature. J. Lightwave Technol., 29, 1367-1374(2011).

[170] Wang B., et al.. Photonic crystal cavity on optical fiber facet for refractive index sensing. Opt. Lett., 37, 833-835(2012).

[171] He X., et al.. Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing. Appl. Phys. Lett., 108, 231105(2016).

[172] Shambat G., et al.. Optical fiber tips functionalized with semiconductor photonic crystal cavities. Appl. Phys. Lett., 99, 191102(2011).

[173] Shambat G., et al.. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Appl. Phys. Lett., 100, 213702(2012).

[174] Jia P., Yang J.. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale, 6, 8836-8843(2014).

[175] Jia P., Yang J.. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing. Appl. Phys. Lett., 102, 243107(2013).

[176] Jia P., et al.. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination. ACS Sens., 1, 1078-1083(2016).

[177] Yu J., et al.. Electrochemical plasmonic optical fiber probe for real-time insight into coreactant electrochemiluminescence. Sens. Actuators B, 321, 128469(2020).

[178] Zhao E., et al.. Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge. Nanotechnology, 28, 435504(2017).

[179] Liu Y., et al.. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform. Adv. Opt. Mater., 7, 1900337(2019).

[180] Arce C. L., et al.. Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet. IEEE Photonics Technol. Lett., 23, 890-892(2011).

[181] Li C., et al.. Nondestructive and in situ determination of graphene layers using optical fiber Fabry–Perot interference. Meas. Sci. Technol., 28, 025206(2017).

[182] Zhang C.-L., et al.. Lab-on-tip based on photothermal microbubble generation for concentration detection. Sens. Actuators B, 255, 2504-2509(2018).

[183] Giaquinto M., et al.. Cavity-enhanced lab-on-fiber technology: toward advanced biosensors and nano-opto-mechanical active devices. ACS Photonics, 6, 3271-3280(2019).

[184] Said A. A., et al.. Carving fiber-top cantilevers with femtosecond laser micromachining. J. Micromech. Microeng., 18, 035005(2008).

[185] Sun B., et al.. Simultaneous measurement of pressure and temperature by employing Fabry–Perot interferometer based on pendant polymer droplet. Opt. Express, 23, 1906-1911(2015).

[186] Won Baac H., et al.. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett., 97, 234104(2010).

[187] Ansari R., et al.. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light Sci. Appl., 7, 75(2018).

[188] Li C., Peng X., Liu J.. Fiber-tip photoacoustic probe with MoS2-PDMS composite coating for temperature and density-induced ultrasonic speed tuning. OSA Continuum, 1, 488-495(2018).

[189] Zhang E., Beard P.. A miniature all-optical photoacoustic imaging probe. Proc. SPIE, 7899, 78991F(2011).

[190] Guggenheim J. A., et al.. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

[191] Colchester R. J., et al.. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett., 104, 173502(2014).

[192] Noimark S., et al.. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging. Adv. Funct. Mater., 26, 8390-8396(2016).

[193] Finlay M. C., et al.. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light Sci. Appl., 6, e17103(2017).

[194] Koshelev A., et al.. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. Opt. Lett., 41, 3423-3426(2016).

[195] Kim J., et al.. Achievement of large spot size and long collimation length using UV curable self-assembled polymer lens on a beam expanding core-less silica fiber. IEEE Photonics Technol. Lett., 16, 2499-2501(2004).

[196] Kyung-Rok K., Selee C., Oh K.. Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension. IEEE Photonics Technol. Lett., 15, 1100-1102(2003).

[197] Tuniz A., Schmidt M. A.. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics, 7, 1279-1298(2018).

[198] Kong L., et al.. Protruding-shaped SiO2-microtip: from fabrication innovation to microphotonic device construction. Opt. Lett., 44, 3514-3517(2019).

[199] Udem T., Holzwarth R., Hänsch T. W.. Optical frequency metrology. Nature, 416, 233-237(2002).

[200] Xu C., Wise F. W.. Recent advances in fiber lasers for nonlinear microscopy. Nat. Photonics, 7, 875-882(2013).

[201] Grelu P., Akhmediev N.. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

[202] Smirnov S. V., Kobtsev S. M., Kukarin S. V.. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser. Opt. Express, 22, 1058-1064(2014).

[203] Cheng P., et al.. Mode-locked and Q-switched mode-locked fiber laser based on a ferroferric-oxide nanoparticles saturable absorber. Opt. Express, 28, 13177-13186(2020).

[204] Set S. Y., et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol., 22, 51-56(2004).

[205] Kieu K., Wise F. W.. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photonics Technol. Lett., 21, 128-130(2009).

[206] Rosa H. G., de Souza E. A. T.. Pulse generation and propagation in dispersion-managed ultralong erbium-doped fiber lasers mode-locked by carbon nanotubes. Opt. Lett., 37, 5211(2012).

[207] Luo Y., et al.. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets. Laser Phys. Lett., 14, 110002(2017).

[208] Li D., et al.. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes. Sci. Rep., 8, 2738(2018).

[209] Zhang Z., et al.. Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes. IEEE J. Sel. Top. Quantum Electron., 24, 1100906(2018).

[210] Zhang H., et al.. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 95, 141103(2009).

[211] Popa D., et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett., 97, 203106(2010).

[212] Popa D., et al.. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett., 98, 073106(2011).

[213] Mu H., et al.. Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics, 2, 832-841(2015).

[214] Islam M. R., et al.. Chronology of Fabry–Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14, 7451-7488(2014).

[215] Shao J., et al.. A new hydrogen sensor based on SNS fiber interferometer with Pd/WO3 coating. Sensors, 17, 2144(2017).

[216] Yan H., et al.. A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end-face. Opt. Commun., 359, 157-161(2016).

[217] Yu C., et al.. Fiber-optic Fabry–Perot hydrogen sensor coated with Pd-Y film. Photonic Sens., 5, 142-145(2015).

[218] Li Y., et al.. Optical cascaded Fabry–Perot interferometer hydrogen sensor based on Vernier effect. Opt. Commun., 414, 166-171(2018).

[219] Zhang G., Yang M., Wang Y.. Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing. Opt. Commun., 329, 34-37(2014).

[220] Tang S., et al.. Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration. Opt. Express, 23, 22826-22835(2015).

[221] Kitture R., et al.. Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: studies using ZnO-PMMA. J. Alloys Compd., 695, 2091-2096(2017).

[222] Pawar D., Rao B. V. B., Kale S. N.. Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry–Perot interferometer. Analyst, 143, 1890-1898(2018).

[223] Sansone L., et al.. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens. Actuators B, 202, 523-526(2014).

[224] Debliquy M., et al.. Optical fibre NO2 sensor based on lutetium bisphthalocyanine in a mesoporous silica matrix. Sensors, 18, 740(2018).

[225] Yin M.-J., et al.. Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord. Chem. Rev., 376, 348-392(2018).

[226] Zhang Y.-N., et al.. Recent advancements in optical fiber hydrogen sensors. Sens. Actuators B, 244, 393-416(2017).

[227] Pawar D., Bhaskara Rao B. V., Kale S. N.. Highly porous graphene coated optical fiber in Fabry-Perot interferometric mode for NH3 gas sensing. 13th Int. Conf. Fiber Opt. Photon.(2016).

[228] Mak T., et al.. Optical fiber sensor for the continuous monitoring of hydrogen in oil. Sens. Actuators B, 190, 982-989(2014).

[229] Aray A., et al.. Plasmonic fiber optic hydrogen sensor using oxygen defects in nanostructured molybdenum trioxide film. Opt. Lett., 44, 4773-4776(2019).

[230] Wu B., et al.. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Opt. Fiber Technol., 34, 91-97(2017).

[231] Tabassum S., Kumar R., Dong L.. Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing. IEEE Sens. J., 17, 7262-7272(2017).

[232] Echeverría J. C., Faustini M., Garrido J. J.. Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens. Actuators B, 222, 1166-1174(2016).

[233] Ruan S., Ebendorff-Heidepriem H., Ruan Y.. Optical fibre turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement, 121, 122-126(2018).

[234] Zheng X., et al.. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir, 24, 4394-4398(2008).

[235] Yang X., et al.. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem., 83, 5888-5894(2011).

[236] Sanchez-Solis A., et al.. Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering. Opt. Lett., 44, 4997-5000(2019).

[237] Credi C., et al.. Fiber-cap biosensors for SERS analysis of liquid samples. J. Mater. Chem. B, 8, 1629-1639(2020).

[238] Zhang J., et al.. Tapered fiber probe modified by Ag nanoparticles for SERS detection. Plasmonics, 11, 743-751(2016).

[239] Cao J., Zhao D., Qin Y.. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes. Talanta, 194, 895-902(2019).

[240] Shin J., Bosworth B. T., Foster M. A.. Single-pixel imaging using compressed sensing and wavelength-dependent scattering. Opt. Lett., 41, 886-889(2016).

[241] Zheludev N. I., Kivshar Y. S.. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

[242] Genet C., Ebbesen T. W.. Light in tiny holes. Nature, 445, 39-46(2007).

[243] Yu N., et al.. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

[244] Zhang Z., et al.. On-fiber plasmonic interferometer for multi-parameter sensing. Opt. Express, 23, 10732-10740(2015).

[245] Liang Y., et al.. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Sci. Rep., 9, 7379(2019).

[246] Du B., et al.. Compact plasmonic fiber tip for sensitive and fast humidity and human breath monitoring. Opt. Lett., 45, 985-988(2020).

[247] Wang Y., Liu F., Zhang X.. Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids. Nanoscale, 10, 16193-16200(2018).

[248] Yang T., et al.. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection. Opt. Laser Technol., 101, 468-478(2018).

[249] Kim H. T., Yu M.. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface plasmon polariton resonances for multiparameter sensing. Sci. Rep., 9, 1922(2019).

[250] Dhawan A., et al.. FIB fabrication of metallic nanostructures on end-faces of optical fibers for chemical sensing applications. J. Vac. Sci. Technol. B, 26, 2168-2173(2008).

[251] Malara P., et al.. Resonant enhancement of plasmonic nanostructured fiber optic sensors. Sens. Actuators B, 273, 1587-1592(2018).

[252] Wang N., et al.. Nanotrimer enhanced optical fiber tips implemented by electron beam lithography. Opt. Mater. Express, 8, 2246-2255(2018).

[253] Aliberti A., et al.. Microgel assisted lab-on-fiber optrode. Sci. Rep., 7, 14459(2017).

[254] Giaquinto M., et al.. Optimization strategies for responsivity control of microgel assisted lab-on-fiber optrodes. Sensors, 18, 1119(2018).

[255] Scherino L., et al.. A time-efficient dip coating technique for the deposition of microgels onto the optical fiber tip. Fibers, 6, 72(2018).

[256] Zhu Y., Dluhy R. A., Zhao Y.. Development of silver nanorod array based fiber optic probes for SERS detection. Sens. Actuators B, 157, 42-50(2011).

[257] Consales M., et al.. Metasurface-enhanced lab-on-fiber biosensors. Laser Photonics Rev., 2000180(2020).

[258] Arabi H. E., et al.. A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet. Opt. Express, 21, 28083-28094(2013).

[259] Reader-Harris P., Di Falco A.. Nanoplasmonic filters for hollow core photonic crystal fibers. ACS Photonics, 1, 985-989(2014).

[260] Kim H., et al.. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express, 25, 30290-30303(2017).

[261] Kim H., et al.. Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming. Opt. Express, 25, 8366-8385(2017).

[262] Principe M., et al.. Evaluation of fiber-optic phase-gradient meta-tips for sensing applications. Nanomater. Nanotechnol., 9, 184798041983272(2019).

[263] Yang J., et al.. Photonic crystal fiber metalens. Nanophotonics, 8, 443-449(2019).

[264] Xomalis A., et al.. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 9, 182(2018).

[265] Chen C., et al.. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett., 12, 125-132(2012).

[266] Pang Y., Gordon R.. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett., 11, 3763-3767(2011).

[267] Wang K., et al.. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun., 2, 469(2011).

[268] Grigorenko A. N., et al.. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2, 365-370(2008).

[269] Juan M. L., et al.. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915-919(2009).

[270] Ehtaiba J. M., Gordon R.. Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber. Opt. Express, 27, 14112-14120(2019).

[271] Berthelot J., et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol., 9, 295-299(2014).

[272] Gelfand R. M., Wheaton S., Gordon R.. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Opt. Lett., 39, 6415-6417(2014).

[273] Saleh A. A., et al.. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Opt. Express, 24, 20593-20603(2016).

[274] Pahlevaninezhad H., et al.. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

[275] Zheng B.-C., Xu F.. A compact fiber magnetic sensor based on graphene NEMS(2015).

[276] Wu J. Y., et al.. Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater., 30, 1705880(2018).

[277] Choi W., et al.. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater., 24, 5832-5836(2012).

[278] Gan X., et al.. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

[279] Koppens F. H., et al.. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

[280] Wang Q. H., et al.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

[281] Zhao W. W., Xu J. J., Chen H. Y.. Photoelectrochemical DNA biosensors. Chem. Rev., 114, 7421-7441(2014).

[282] Esquivel K., et al.. Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res., 43, 3593-3603(2009).

[283] Zheng X. T., et al.. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens. Bioelectron., 26, 4484-4490(2011).

[284] Yu S., et al.. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 29, 1606128(2017).

[285] Liu M., et al.. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

[286] Gan X., et al.. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468-471(2015).

[287] Chen J.-H., et al.. An all-optical modulator based on a stereo graphene–microfiber structure. Light Sci. Appl., 4, e360(2015).

[288] Fedotov I. V., et al.. Fiber-optic magnetic-field imaging. Opt. Lett., 39, 6954-6957(2014).

[289] Fedotov I. V., et al.. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber. Opt. Lett., 41, 472-475(2016).

[290] Blakley S. M., et al.. Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond. Opt. Lett., 40, 3727-3730(2015).

[291] Fedotov I. V., et al.. Electron spin manipulation and readout through an optical fiber. Sci. Rep., 4, 5362(2014).

Please Enter Your Email: