Main > Advanced Photonics >  Volume 2 >  Issue 6 >  Page 066002 > Article
  • References
  • Abstract
  • Figures (5)
  • Tables (0)
  • Equations (5)
  • References (43)
  • Suppl. Mat.
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Aug. 9, 2020

    Accepted: Oct. 2, 2020

    Posted: Oct. 30, 2020

    Published Online: Oct. 30, 2020

    The Author Email: Zhou Yunke (N1903844G@e.ntu.edu.sg), Yuan Zhiyi (ZHIYI003@e.ntu.edu.sg), Gong Xuerui (XUERUI001@e.ntu.edu.sg), Birowosuto Muhammad D. (mbirowosuto@ntu.edu.sg), Dang Cuong (hcdang@ntu.edu.sg), Chen Yu-Cheng (yucchen@ntu.edu.sg)

    DOI: 10.1117/1.AP.2.6.066002

  • Get Citation
  • Copy Citation Text

    Yunke Zhou, Zhiyi Yuan, Xuerui Gong, Muhammad D. Birowosuto, Cuong Dang, Yu-Cheng Chen. Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer[J]. Advanced Photonics, 2020, 2(6): 066002

    Download Citation

  • Category
  • Research Articles
  • Share

[1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

[2] Y. C. Chen, X. Fan. Biological lasers for biomedical applications. Adv. Opt. Mater., 7, 1900377(2019).

[3] T. Reynolds, et al.. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 11, 1600265(2017).

[4] X. Fan, S. H. Yun. The potential of optofluidic biolasers. Nat. Methods, 11, 141-147(2014).

[5] A. Fernandez-Bravo, et al.. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol., 13, 572-577(2018).

[6] E. Kim, M. D. Baaske, F. Vollmer. Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors. Lab Chip, 17, 1190-1205(2017).

[7] Y. C. Chen, et al.. Versatile tissue lasers based on high-Q Fabry–Perot microcavities. Lab Chip, 17, 538-548(2017).

[8] Y. C. Chen, et al.. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng., 1, 724-735(2017).

[9] C. Gong, et al.. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme. Biosens. Bioelectron., 96, 351-357(2017).

[10] M. Humar, M. C. Gather, S. H. Yun. Cellular dye lasers: lasing thresholds and sensing in a planar resonator. Opt. Express, 23, 27865-27879(2015).

[11] M. Humar, et al.. Electrically tunable liquid crystal optical microresonators. Nat. Photonics, 3, 595-600(2009).

[12] Z. Yuan, et al.. Lasing-encoded microsensor driven by interfacial cavity resonance energy transfer. Adv. Opt. Mater., 8, 2070029(2020).

[13] Y. C. Chen, Q. Chen, X. Fan. Optofluidic chlorophyll lasers. Lab. Chip, 16, 2228-2235(2016).

[14] Y. C. Chen, Q. Chen, X. Fan. Lasing in blood. Optica, 3, 809-815(2016).

[15] M. Humar, I. Muševič. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt. Express, 19, 19836-19844(2011).

[16] M. Humar, S. H. Yun. Whispering-gallery-mode emission from biological luminescent protein microcavity assemblies. Optica, 4, 222-228(2017).

[17] V. D. Ta, et al.. Microsphere solid-state biolasers. Adv. Opt. Mater., 5, 1601022(2017).

[18] S. Hachuda, et al.. Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors. Opt. Express, 21, 12815-12821(2013).

[19] K. Watanabe, et al.. Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor. Biosens. Bioelectron., 117, 161-167(2018).

[20] N. Martino, et al.. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics, 13, 720-727(2019).

[21] Z. Gao, et al.. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv. Mater., 29, 1701558(2017).

[22] D. Richter, M. Marincic, M. Humar. Optical-resonance-assisted generation of super monodisperse microdroplets and microbeads with nanometer precision. Lab Chip, 20, 734-740(2020).

[23] F. Ramiro-Manzano, et al.. Porous silicon microcavities based photonic barcodes. Adv. Mater., 23, 3022-3025(2011).

[24] M. Humar, A. Upadhya, S. H. Yun. Spectral reading of optical resonance-encoded cells in microfluidics. Lab Chip, 17, 2777-2784(2017).

[25] D. Okada, et al.. Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints. Mater. Horiz., 7, 1801-1808(2020).

[26] H. H. Gorris, O. S. Wolfbeis. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed., 52, 3584-3600(2013).

[27] H. Lee, et al.. Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat. Mater., 9, 745-749(2010).

[28] D. S.-Z. Zhang, et al.. Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays. Adv. Funct. Mater., 26, 6146-6157(2016).

[29] A. H. Fikouras, et al.. Non-obstructive intracellular nanolasers. Nat. Commun., 9, 4817(2018).

[30] M. Schubert, et al.. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett., 15, 5647-5652(2015).

[31] F. Yesilkoy, et al.. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390-396(2019).

[32] Y. Yao, et al.. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew. Chem. Int. Ed., 58, 13803-13807(2019).

[33] Z. Gao, et al.. Spatially responsive multicolor lanthanide-MOF heterostructures for covert photonic barcodes. Angew. Chem. Int. Ed., 59, 19064(2020).

[34] A. E. Krasnok, et al.. An antenna model for the Purcell effect. Sci. Rep., 5, 12956(2015).

[35] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37-38(1946).

[36] B. Romeira, A. Fiore. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers. IEEE J. Quantum Electron., 54, 2000412(2018).

[37] J. Gérard, et al.. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett., 81, 1110-1113(1998).

[38] H.-J. Moon, Y.-T. Chough, K. An. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys. Rev. Lett., 85, 3161-3164(2000).

[39] S. Sidiq, et al.. Poly(l-lysine)-coated liquid crystal droplets for cell-based sensing applications. J. Phys. Chem. B, 121, 4247-4256(2017).

[40] I. Verma, S. Sidiq, S. K. Pal. Poly(l-lysine)-coated liquid crystal droplets for sensitive detection of DNA and their applications in controlled release of drug molecules. ACS Omega, 2, 7936-7945(2017).

[41] M. Humar. Liquid-crystal-droplet optical microcavities. Liq. Cryst., 43, 1937-1950(2016).

[42] A. N. Oraevsky. Whispering-gallery waves. Quantum Electron. (Woodbury), 32, 377(2002).

[43] J. R.Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science & Business Media (2013).

Please Enter Your Email: