Main > Photonics Research >  Volume 8 >  Issue 5 >  Page 05000684 > Article
  • References
  • Abstract
  • Figures (5)
  • Tables (1)
  • Equations (0)
  • References (25)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jan. 13, 2020

    Accepted: Feb. 27, 2020

    Posted: Feb. 28, 2020

    Published Online: Apr. 22, 2020

    The Author Email: Daoxin Dai (

    DOI: 10.1364/PRJ.387816

  • Get Citation
  • Copy Citation Text

    Long Zhang, Lanlan Jie, Ming Zhang, Yi Wang, Yiwei Xie, Yaocheng Shi, Daoxin Dai. Ultrahigh-Q silicon racetrack resonators[J]. Photonics Research, 2020, 8(5): 05000684

    Download Citation

  • Category
  • Silicon Photonics
  • Share

[1] W. Bogaerts, L. Chrostowski. Silicon photonics circuit design: methods, tools and challenges. Laser Photon. Rev., 12, 1700237(2018).

[2] D. Dai. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc. IEEE, 106, 2117-2143(2018).

[3] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

[4] M. S. Rasras, D. M. Kun-Yii Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, L. C. Kimerling. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators. J. Lightwave Technol., 27, 2105-2110(2009).

[5] B. Stern, J. Xingchen, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541-4544(2017).

[6] B. Q. Su, C. X. Wang, Q. Kan, H. D. Chen. Compact silicon-on-insulator dual-microring resonator optimized for sensing. J. Lightwave Technol., 29, 1535-1541(2011).

[7] D. Dai, S. He. Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring. J. Opt. Soc. Am. B, 26, 511-516(2009).

[8] M. Pöllinger, A. Rauschenbeutel. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect. Opt. Express, 18, 17764-17775(2010).

[9] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

[10] T. H. Chang, B. M. Fields, M. E. Kim, C. L. Hung. Microring resonators on a suspended membrane circuit for atom-light interactions. Optica, 6, 1203-1210(2019).

[11] F. P. Payne, J. P. R. Lacey. A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron., 26, 977-986(1994).

[12] W. C. Jiang, J. Zhang, Q. Lin. Compact suspended silicon microring resonators with ultrahigh quality. Opt. Express, 22, 1187-1192(2014).

[13] L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, M. Lipson. High quality factor etchless silicon photonic ring resonators. Opt. Express, 19, 6284-6289(2011).

[14] A. Griffith, J. Cardenas, C. B. Poitras, M. Lipson. High quality factor and high confinement silicon resonators using etchless process. Opt. Express, 20, 21341-21345(2012).

[15] M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, L. Chrostowski. Large-area, high-Q SOI ring resonators. Proceedings of IEEE Photonics Conference, 336-337(2014).

[16] Y. Zhang, X. Hu, D. Chen, L. Wang, M. Li, P. Feng, X. Xiao, S. Yu. Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide. Opt. Lett., 43, 1586-1589(2018).

[17] M. Burla, B. Crockett, L. Chrostowski, J. Azana. Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing. International Topical Meeting on Microwave Photonics, 1-4(2015).

[18] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts. Ultralow-loss silicon ring resonators. Opt. Lett., 37, 4236-4238(2012).

[19] S. Liu, W. Z. Sun, Y. J. Wang, X. Y. Yu, K. Xu, Y. Z. Huang, S. M. Xiao, Q. H. Song. End-fire injection of light into high-Q silicon microdisks. Optica, 5, 612-616(2018).

[20] J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 19, 3163-3174(2011).

[21] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, L. C. Kimerling. Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett., 77, 1617-1619(2000).

[22] X. Jiang, H. Wu, D. Dai. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 26, 17680-17689(2018).

[23] M. K. Chin, S. T. Ho. Design and modeling of waveguide-coupled single-mode microring resonators. J. Lightwave Technol., 16, 1433-1446(1998).

[24] D. Dai, J. Bowers. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express, 19, 10940-10949(2011).

[25] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

Please Enter Your Email: