Main > Advanced Photonics >  Volume 2 >  Issue 1 >  Page 014003 > Article
  • References
  • Abstract
  • Figures (14)
  • Tables (0)
  • Equations (17)
  • References (112)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Nov. 5, 2019

    Accepted: Feb. 12, 2020

    Posted: Mar. 2, 2020

    Published Online: Mar. 2, 2020

    The Author Email: Qi Dalong (dlqi@lps.ecnu.edu.cn), Zhang Shian (sazhang@phy.ecnu.edu.cn), Yang Chengshuai (52162099016@stu.ecnu.edu.cn), He Yilin (51170920009@stu.ecnu.edu.cn), Cao Fengyan (52170920018@stu.ecnu.edu.cn), Yao Jiali (51170920046@stu.ecnu.edu.cn), Ding Pengpeng (51180920005@stu.ecnu.edu.cn), Gao Liang (gaol@illinois.edu), Jia Tianqing (tqjia@phy.ecnu.edu.cn), Liang Jinyang (jinyang.liang@emt.inrs.ca), Sun Zhenrong (zrsun@phy.ecnu.edu.cn), Wang Lihong V. (LVW@caltech.edu)

    DOI: 10.1117/1.AP.2.1.014003

  • Get Citation
  • Copy Citation Text

    Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Lihong V. Wang. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2(1): 014003

    Download Citation

  • Category
  • Reviews
  • Share

[1] B.Clegg, The Man Who Stopped Time: The Illuminating Story of Eadweard Muybridge--Pioneer Photographer, Father of the Motion Picture, Murderer, Joseph Henry Press, Washington, D.C. (2007).

[2] S. X. Hu, L. A. Collins. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett., 96, 073004(2006).

[3] C. P. Hauri, et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B, 79, 673-677(2004).

[4] T. Gaumnitz, et al.. Streaking of 43-attosecond soft-x-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express, 25, 27506-27518(2017).

[5] S. A. Hilbert, et al.. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U. S. A., 106, 10558-10563(2009).

[6] S. P. Weathersby, et al.. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum., 86, 073702(2015).

[7] Y. Morimoto, P. Baum. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys., 14, 252-256(2018).

[8] M. T. Hassan. Attomicroscopy: from femtosecond to attosecond electron microscopy. J. Phys. B, 51, 032005(2018).

[9] D. R. Solli, et al.. Optical rogue waves. Nature, 450, 1054-1057(2007).

[10] B. J. Siwick, et al.. An atomic-level view of melting using femtosecond electron diffraction. Science, 302, 1382-1385(2003).

[11] J. Yang, et al.. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science, 361, 64-67(2018).

[12] R. S. Craxton, et al.. Direct-drive inertial confinement fusion: a review. Phys. Plasmas, 22, 110501(2015).

[13] J. Y. Liang, et al.. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

[14] V. Tiwari, M. Sutton, S. McNeill. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp. Mech., 47, 561-579(2007).

[15] X. Wang, et al.. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl. Opt., 53, 8395-8399(2014).

[16] K. Nakagawa, et al.. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

[17] T. Kakue, et al.. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J. Sel. Top. Quantum Electron., 18, 479-485(2012).

[18] N. H. Matlis, A. Axley, W. P. Leemans. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun., 3, 1111(2012).

[19] L. Gao, et al.. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).

[20] F. Mochizuki, et al.. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express, 24, 4155-4176(2016).

[21] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

[22] R. M. Willett, R. F. Marcia, J. M. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50, 072601(2011).

[23] E. J. Candès, J. K. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

[24] E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59, 1207-1223(2006).

[25] E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory, 52, 5406-5425(2006).

[26] J. A. Tropp, S. J. Wright. Computational methods for sparse solution of linear inverse problems. Proc. IEEE, 98, 948-958(2010).

[27] C. S. Yang, et al.. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 5, 147-151(2018).

[28] J. M. Bioucas-Dias, M. A. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

[29] C. Yang, et al.. Compressed ultrafast photography by multi-encoding imaging. Laser Phys. Lett., 15, 116202(2018).

[30] M. Elad. Optimized projections for compressed sensing. IEEE Trans. Signal Process., 55, 5695-5702(2007).

[31] J. M. Duarte-Carvajalino, et al.. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process., 18, 1395-1408(2009).

[32] V. Abolghasemi, et al.. On optimization of the measurement matrix for compressive sensing, 427-431(2010).

[33] J. Liang, et al.. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci. Adv., 3, e1601814(2017).

[34] J. Liang, L. Zhu, L. V. Wang. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci. Appl., 7, 42(2018).

[35] J. Y. Liang, et al.. Encrypted three-dimensional dynamic imaging using snapshot time-of-fight compressed ultrafast photography. Sci. Rep., 5, 15504(2015).

[36] C. S. Yang, et al.. Improving the image reconstruction quality of compressed ultrafast photography via an augmented Lagrangian algorithm. J. Opt., 21, 035703(2019).

[37] L. Zhu, et al.. Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 3, 694-697(2016).

[38] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging Vis., 20, 89-97(2004).

[39] M. V. Afonso, J. M. Bioucas-Dias, M. A. Figueiredo. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process., 20, 681-695(2011).

[40] J.Nocedal and S. J.Wright, Numerical Optimization, 2nd ed., Chapter 14, pp. 511513, Springer, New York (2006).

[41] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2008).

[42] J. Hunt, et al.. Metamaterial apertures for computational imaging. Science, 339, 310-313(2013).

[43] Y. Lu, et al.. Compressed ultrafast spectral–temporal photography. Phys. Rev. Lett., 122, 193904(2019).

[44] D. L. Qi, et al.. Compressed ultrafast electron diffraction imaging through electronic encoding. Phys. Rev. Appl., 10, 054061(2018).

[45] X. L. Liu, et al.. Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: analytical modeling and simulation. Micron, 117, 47-54(2019).

[46] X. L. Liu, et al.. Single-shot compressed optical-streaking ultra-high-speed photography. Opt. Lett., 44, 1387-1390(2019).

[47] T. Chen, et al.. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295-300(2013).

[48] H. Mikami, L. Gao, K. Goda. Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 5, 497-509(2016).

[49] D. Jaque, F. Vetrone. Luminescence nanothermometry. Nanoscale, 4, 4301-4326(2012).

[50] S. T. Flock, et al.. Monte Carlo modeling of light propagation in highly scattering tissues—I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng., 36, 1162-1168(1989).

[51] C. Zhu, Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt., 18, 050902(2013).

[52] L. V.Wang and H. I.Wu, Biomedical Optics: Principles and Imaging, Wiley, New Jersey (2009).

[53] R. M. Koehl, S. Adachi, K. A. Nelson. Direct visualization of collective wavepacket dynamics. J. Phys. Chem. A, 103, 10260-10267(1999).

[54] Z. Wang, F. Su, F. A. Hegmann. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO3. Opt. Express, 23, 8073-8086(2015).

[55] D. Huang, et al.. Optical coherence tomography. Science, 254, 1178-1181(1991).

[56] A. N. Obeid, et al.. A critical review of laser Doppler flowmetry. J. Med. Eng. Technol., 14, 178-181(1990).

[57] T. Durduran, et al.. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys., 73, 076701(2010).

[58] K. Omasa, F. Hosoi, A. Konishi. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot., 58, 881-898(2007).

[59] S. L. Liu, et al.. Fast and high-accuracy localization for three-dimensional single-particle tracking. Sci. Rep., 3, 2462(2013).

[60] B.Javidi, F.Okano and J. Y.Son, Eds., Three-Dimensional Imaging, Visualization, and Display, Springer, New York (2009).

[61] A.Koschanet al., Eds., 3D Imaging for Safety and Security, Springer, New York (2007).

[62] T. Bell, S. Zhang. Toward superfast three-dimensional optical metrology with digital micromirror device platforms. Opt. Eng., 53, 112206(2014).

[63] J. Kittler, et al.. 3D assisted face recognition: a survey of 3D imaging, modelling and recognition approaches. Proc. IEEE Comput. Soc. Conf. CVPR, 114-120(2005).

[64] P. Dickson, et al.. Mosaic generation for under vehicle inspection. Proc. Sixth IEEE Workshop Appl. Comput. Vision, 251-256(2002).

[65] S. R. Sukumar, et al.. Robotic three-dimensional imaging system for under-vehicle inspection. J. Electron. Imaging, 15, 033008(2006).

[66] . Deliver mission critical insights.

[67] C. W. Trussell. 3D imaging for army applications. Proc. SPIE, 4377, 126-131(2001).

[68] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

[69] P. S. Huang, S. Zhang. Fast three-step phase-shifting algorithm. Appl. Opt., 45, 5086-5091(2006).

[70] B. Javidi, G. Zhang, J. Li. Encrypted optical memory using double-random phase encoding. Appl. Opt., 36, 1054-1058(1997).

[71] A. Velten, et al.. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).

[72] G. Satat, et al.. Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nat. Commun., 6, 6796(2015).

[73] X. Xiao, et al.. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt., 52, 546-560(2013).

[74] B. Sun, et al.. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

[75] Y. Y. Chen, et al.. A 3-D surveillance system using multiple integrated cameras. IEEE Int. Conf. Inf. and Autom. (ICIA), 1930-1935(2010).

[76] J. Sell, P. O’Connor. The Xbox One system on a chip and kinect sensor. IEEE Micro, 34, 44-53(2014).

[77] G. Gariepy, et al.. Detection and tracking of moving objects hidden from view. Nat. Photonics, 10, 23-26(2015).

[78] X. Liu, et al.. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019).

[79] A. McCarthy, et al.. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express, 21, 8904-8915(2013).

[80] A. Medina, F. Gayá, F. del Pozo. Compact laser radar and three-dimensional camera. J. Opt. Soc. Am. A, 23, 800-805(2006).

[81] S. Gokturk, H. Yalcin, C. Bamji. A time-of-flight depth sensor: system description, issues and solutions, 35-44(2004).

[82] G. J. Iddan, G. Yahav. Three-dimensional imaging in the studio and elsewhere. Proc. SPIE, 4298, 48-55(2001).

[83] . Products overview.

[84] R. Stettner, H. Bailey, R. D. Richmond. Eye-safe laser radar 3D imaging. Proc. SPIE, 4377, 46-56(2001).

[85] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett., 23, 792-794(1998).

[86] D. J. Kane, R. Trebino. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulses by using frequency-resolved optical gating. Opt. Lett., 18, 823-825(1993).

[87] F. Y. Cao, et al.. Single-shot spatiotemporal intensity measurement of picosecond laser pulses with compressed ultrafast photography. Opt. Lasers Eng., 116, 89-93(2019).

[88] G. H. Zhu, et al.. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

[89] D. Oron, E. Tal, Y. Silberberg. Scanningless depth-resolved microscopy. Opt. Express, 13, 1468-1476(2005).

[90] Z. Bor, et al.. Femtosecond pulse front tilt caused by angular dispersion. Opt. Eng., 32, 2501-2504(1993).

[91] J. Hebling. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron., 28, 1759-1763(1996).

[92] T. Kubota, et al.. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt. Express, 15, 14348-14354(2007).

[93] Z. Y. Li, et al.. Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun., 5, 3085(2014).

[94] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

[95] T. Suzukiet, et al.. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5. Appl. Phys. Express, 10, 092502(2017).

[96] A. Ehn, et al.. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

[97] P. Gabolde, R. Trebino. Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography. J. Opt. Soc. Am. B, 25, A25-A33(2008).

[98] G. L. Long, X. S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302(2002).

[99] N. Gisin, et al.. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

[100] T. Honjo, et al.. Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express, 16, 19118-19126(2008).

[101] L. Gyongyosi. Improved long-distance two-way continuous variable quantum key distribution over optical fiber, FW2C.5(2013).

[102] D. J. Bernstein, D. J. Bernstein, J. Buchmann, E. Dahmen. Introduction to post-quantum cryptography. Post-Quantum Cryptography, 1-14(2009).

[103] S. Ranganathan, et al.. A three-party authentication for key distributed protocol using classical and quantum cryptography. Int. J. Comput. Sci. Issues, 7, 148-153(2010).

[104] W. Liu, et al.. Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China Phys. Mech. Astron., 58, 1-7(2015).

[105] L. Gyongyosi, S. Imre. Adaptive multicarrier quadrature division modulation for long-distance continuous-variable quantum key distribution. Proc. SPIE, 9123, 912307(2014).

[106] L. C. Comandar, et al.. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett., 104, 021101(2014).

[107] C. S. Yang, et al.. Compressed 3D image information and communication security. Adv. Quantum Technol., 1, 1800034(2018).

[108] C. Dong, et al.. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intel., 38, 295-307(2015).

[109] H. Wang, et al.. Deep learning achieves super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).

[110] A. Sinha, et al.. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

[111] M. Lyu, et al.. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

[112] M. Lyu, et al.. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

Please Enter Your Email: