Main > Advanced Photonics >  Volume 2 >  Issue 1 >  Page 014003 > Article
  • References
  • Abstract
  • Figures (14)
  • Tables (0)
  • Equations (17)
  • References (112)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Nov. 5, 2019

    Accepted: Feb. 12, 2020

    Posted: Mar. 2, 2020

    Published Online: Mar. 2, 2020

    The Author Email: Qi Dalong (, Zhang Shian (, Yang Chengshuai (, He Yilin (, Cao Fengyan (, Yao Jiali (, Ding Pengpeng (, Gao Liang (, Jia Tianqing (, Liang Jinyang (, Sun Zhenrong (, Wang Lihong V. (

    DOI: 10.1117/1.AP.2.1.014003

  • Get Citation
  • Copy Citation Text

    Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Lihong V. Wang. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2(1): 014003

    Download Citation

  • Category
  • Reviews
  • Share

[1] B.Clegg, The Man Who Stopped Time: The Illuminating Story of Eadweard Muybridge--Pioneer Photographer, Father of the Motion Picture, Murderer, Joseph Henry Press, Washington, D.C. (2007).

[2] S. X. Hu, L. A. Collins. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett., 96, 073004(2006).

[3] C. P. Hauri, et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B, 79, 673-677(2004).

[4] T. Gaumnitz, et al.. Streaking of 43-attosecond soft-x-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express, 25, 27506-27518(2017).

[5] S. A. Hilbert, et al.. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U. S. A., 106, 10558-10563(2009).

[6] S. P. Weathersby, et al.. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum., 86, 073702(2015).

[7] Y. Morimoto, P. Baum. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys., 14, 252-256(2018).

[8] M. T. Hassan. Attomicroscopy: from femtosecond to attosecond electron microscopy. J. Phys. B, 51, 032005(2018).

[9] D. R. Solli, et al.. Optical rogue waves. Nature, 450, 1054-1057(2007).

[10] B. J. Siwick, et al.. An atomic-level view of melting using femtosecond electron diffraction. Science, 302, 1382-1385(2003).

[11] J. Yang, et al.. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science, 361, 64-67(2018).

[12] R. S. Craxton, et al.. Direct-drive inertial confinement fusion: a review. Phys. Plasmas, 22, 110501(2015).

[13] J. Y. Liang, et al.. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

[14] V. Tiwari, M. Sutton, S. McNeill. Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp. Mech., 47, 561-579(2007).

[15] X. Wang, et al.. High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique. Appl. Opt., 53, 8395-8399(2014).

[16] K. Nakagawa, et al.. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

[17] T. Kakue, et al.. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J. Sel. Top. Quantum Electron., 18, 479-485(2012).

[18] N. H. Matlis, A. Axley, W. P. Leemans. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun., 3, 1111(2012).

[19] L. Gao, et al.. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).

[20] F. Mochizuki, et al.. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express, 24, 4155-4176(2016).

[21] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14-25(2003).

[22] R. M. Willett, R. F. Marcia, J. M. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng., 50, 072601(2011).

[23] E. J. Candès, J. K. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

[24] E. J. Candès, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59, 1207-1223(2006).

[25] E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory, 52, 5406-5425(2006).

[26] J. A. Tropp, S. J. Wright. Computational methods for sparse solution of linear inverse problems. Proc. IEEE, 98, 948-958(2010).

[27] C. S. Yang, et al.. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 5, 147-151(2018).

[28] J. M. Bioucas-Dias, M. A. Figueiredo. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

[29] C. Yang, et al.. Compressed ultrafast photography by multi-encoding imaging. Laser Phys. Lett., 15, 116202(2018).

[30] M. Elad. Optimized projections for compressed sensing. IEEE Trans. Signal Process., 55, 5695-5702(2007).

[31] J. M. Duarte-Carvajalino, et al.. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process., 18, 1395-1408(2009).

[32] V. Abolghasemi, et al.. On optimization of the measurement matrix for compressive sensing, 427-431(2010).

[33] J. Liang, et al.. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci. Adv., 3, e1601814(2017).

[34] J. Liang, L. Zhu, L. V. Wang. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci. Appl., 7, 42(2018).

[35] J. Y. Liang, et al.. Encrypted three-dimensional dynamic imaging using snapshot time-of-fight compressed ultrafast photography. Sci. Rep., 5, 15504(2015).

[36] C. S. Yang, et al.. Improving the image reconstruction quality of compressed ultrafast photography via an augmented Lagrangian algorithm. J. Opt., 21, 035703(2019).

[37] L. Zhu, et al.. Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 3, 694-697(2016).

[38] A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imaging Vis., 20, 89-97(2004).

[39] M. V. Afonso, J. M. Bioucas-Dias, M. A. Figueiredo. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process., 20, 681-695(2011).

[40] J.Nocedal and S. J.Wright, Numerical Optimization, 2nd ed., Chapter 14, pp. 511513, Springer, New York (2006).

[41] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1, 586-597(2008).

[42] J. Hunt, et al.. Metamaterial apertures for computational imaging. Science, 339, 310-313(2013).

[43] Y. Lu, et al.. Compressed ultrafast spectral–temporal photography. Phys. Rev. Lett., 122, 193904(2019).

[44] D. L. Qi, et al.. Compressed ultrafast electron diffraction imaging through electronic encoding. Phys. Rev. Appl., 10, 054061(2018).

[45] X. L. Liu, et al.. Single-shot real-time sub-nanosecond electron imaging aided by compressed sensing: analytical modeling and simulation. Micron, 117, 47-54(2019).

[46] X. L. Liu, et al.. Single-shot compressed optical-streaking ultra-high-speed photography. Opt. Lett., 44, 1387-1390(2019).

[47] T. Chen, et al.. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295-300(2013).

[48] H. Mikami, L. Gao, K. Goda. Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 5, 497-509(2016).

[49] D. Jaque, F. Vetrone. Luminescence nanothermometry. Nanoscale, 4, 4301-4326(2012).

[50] S. T. Flock, et al.. Monte Carlo modeling of light propagation in highly scattering tissues—I. Model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng., 36, 1162-1168(1989).

[51] C. Zhu, Q. Liu. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt., 18, 050902(2013).

[52] L. V.Wang and H. I.Wu, Biomedical Optics: Principles and Imaging, Wiley, New Jersey (2009).

[53] R. M. Koehl, S. Adachi, K. A. Nelson. Direct visualization of collective wavepacket dynamics. J. Phys. Chem. A, 103, 10260-10267(1999).

[54] Z. Wang, F. Su, F. A. Hegmann. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO3. Opt. Express, 23, 8073-8086(2015).

[55] D. Huang, et al.. Optical coherence tomography. Science, 254, 1178-1181(1991).

[56] A. N. Obeid, et al.. A critical review of laser Doppler flowmetry. J. Med. Eng. Technol., 14, 178-181(1990).

[57] T. Durduran, et al.. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys., 73, 076701(2010).

[58] K. Omasa, F. Hosoi, A. Konishi. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot., 58, 881-898(2007).

[59] S. L. Liu, et al.. Fast and high-accuracy localization for three-dimensional single-particle tracking. Sci. Rep., 3, 2462(2013).

[60] B.Javidi, F.Okano and J. Y.Son, Eds., Three-Dimensional Imaging, Visualization, and Display, Springer, New York (2009).

[61] A.Koschanet al., Eds., 3D Imaging for Safety and Security, Springer, New York (2007).

[62] T. Bell, S. Zhang. Toward superfast three-dimensional optical metrology with digital micromirror device platforms. Opt. Eng., 53, 112206(2014).

[63] J. Kittler, et al.. 3D assisted face recognition: a survey of 3D imaging, modelling and recognition approaches. Proc. IEEE Comput. Soc. Conf. CVPR, 114-120(2005).

[64] P. Dickson, et al.. Mosaic generation for under vehicle inspection. Proc. Sixth IEEE Workshop Appl. Comput. Vision, 251-256(2002).

[65] S. R. Sukumar, et al.. Robotic three-dimensional imaging system for under-vehicle inspection. J. Electron. Imaging, 15, 033008(2006).

[66] . Deliver mission critical insights.

[67] C. W. Trussell. 3D imaging for army applications. Proc. SPIE, 4377, 126-131(2001).

[68] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

[69] P. S. Huang, S. Zhang. Fast three-step phase-shifting algorithm. Appl. Opt., 45, 5086-5091(2006).

[70] B. Javidi, G. Zhang, J. Li. Encrypted optical memory using double-random phase encoding. Appl. Opt., 36, 1054-1058(1997).

[71] A. Velten, et al.. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).

[72] G. Satat, et al.. Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nat. Commun., 6, 6796(2015).

[73] X. Xiao, et al.. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt., 52, 546-560(2013).

[74] B. Sun, et al.. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

[75] Y. Y. Chen, et al.. A 3-D surveillance system using multiple integrated cameras. IEEE Int. Conf. Inf. and Autom. (ICIA), 1930-1935(2010).

[76] J. Sell, P. O’Connor. The Xbox One system on a chip and kinect sensor. IEEE Micro, 34, 44-53(2014).

[77] G. Gariepy, et al.. Detection and tracking of moving objects hidden from view. Nat. Photonics, 10, 23-26(2015).

[78] X. Liu, et al.. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572, 620-623(2019).

[79] A. McCarthy, et al.. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express, 21, 8904-8915(2013).

[80] A. Medina, F. Gayá, F. del Pozo. Compact laser radar and three-dimensional camera. J. Opt. Soc. Am. A, 23, 800-805(2006).

[81] S. Gokturk, H. Yalcin, C. Bamji. A time-of-flight depth sensor: system description, issues and solutions, 35-44(2004).

[82] G. J. Iddan, G. Yahav. Three-dimensional imaging in the studio and elsewhere. Proc. SPIE, 4298, 48-55(2001).

[83] . Products overview.

[84] R. Stettner, H. Bailey, R. D. Richmond. Eye-safe laser radar 3D imaging. Proc. SPIE, 4377, 46-56(2001).

[85] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett., 23, 792-794(1998).

[86] D. J. Kane, R. Trebino. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulses by using frequency-resolved optical gating. Opt. Lett., 18, 823-825(1993).

[87] F. Y. Cao, et al.. Single-shot spatiotemporal intensity measurement of picosecond laser pulses with compressed ultrafast photography. Opt. Lasers Eng., 116, 89-93(2019).

[88] G. H. Zhu, et al.. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

[89] D. Oron, E. Tal, Y. Silberberg. Scanningless depth-resolved microscopy. Opt. Express, 13, 1468-1476(2005).

[90] Z. Bor, et al.. Femtosecond pulse front tilt caused by angular dispersion. Opt. Eng., 32, 2501-2504(1993).

[91] J. Hebling. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron., 28, 1759-1763(1996).

[92] T. Kubota, et al.. Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation. Opt. Express, 15, 14348-14354(2007).

[93] Z. Y. Li, et al.. Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun., 5, 3085(2014).

[94] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

[95] T. Suzukiet, et al.. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5. Appl. Phys. Express, 10, 092502(2017).

[96] A. Ehn, et al.. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

[97] P. Gabolde, R. Trebino. Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography. J. Opt. Soc. Am. B, 25, A25-A33(2008).

[98] G. L. Long, X. S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302(2002).

[99] N. Gisin, et al.. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

[100] T. Honjo, et al.. Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express, 16, 19118-19126(2008).

[101] L. Gyongyosi. Improved long-distance two-way continuous variable quantum key distribution over optical fiber, FW2C.5(2013).

[102] D. J. Bernstein, D. J. Bernstein, J. Buchmann, E. Dahmen. Introduction to post-quantum cryptography. Post-Quantum Cryptography, 1-14(2009).

[103] S. Ranganathan, et al.. A three-party authentication for key distributed protocol using classical and quantum cryptography. Int. J. Comput. Sci. Issues, 7, 148-153(2010).

[104] W. Liu, et al.. Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci. China Phys. Mech. Astron., 58, 1-7(2015).

[105] L. Gyongyosi, S. Imre. Adaptive multicarrier quadrature division modulation for long-distance continuous-variable quantum key distribution. Proc. SPIE, 9123, 912307(2014).

[106] L. C. Comandar, et al.. Room temperature single-photon detectors for high bit rate quantum key distribution. Appl. Phys. Lett., 104, 021101(2014).

[107] C. S. Yang, et al.. Compressed 3D image information and communication security. Adv. Quantum Technol., 1, 1800034(2018).

[108] C. Dong, et al.. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intel., 38, 295-307(2015).

[109] H. Wang, et al.. Deep learning achieves super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).

[110] A. Sinha, et al.. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

[111] M. Lyu, et al.. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

[112] M. Lyu, et al.. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

Please Enter Your Email: