Main > Chinese Journal of Lasers >  Volume 44 >  Issue 7 >  Page 703001 > Article
  • References
  • Abstract
  • View Summary
  • Figures (0)
  • Tables (0)
  • Equations (0)
  • References (105)
  • Get PDF
  • Paper Information
  • Received: Mar. 8, 2017

    Accepted: --

    Posted: Jul. 1, 2017

    Published Online: Jul. 5, 2017

    The Author Email: Shuang Xie (shuang_xie@zju.edu.cn), Mingsheng Xu (msxu@zju.edu.cn)

    DOI: 10.3788/cjl201744.0703001

  • Get Citation
  • Copy Citation Text

    Xie Shuang, Liang Tao, Ma Xiangyang, Xu Mingsheng. Preparation, Properties and Optoelectronic Applications of Transition Metal Dichalcogenides[J]. Chinese Journal of Lasers, 2017, 44(7): 703001

    Download Citation

  • Share

[1] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Review, 2013, 113(5): 3766-3798.

[2] Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[3] Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.

[4] Xu X D, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nature Physics, 2014, 10(5): 343-350.

[5] Li H, Yin Z Y, He Q Y, et al. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.

[6] Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[7] Cunningham G, Lotya M, Cucinotta C S, et al. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds[J]. ACS Nano, 2012, 6(4): 3468-3480.

[8] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47): 11093-11097.

[9] Yang X, Fu W F, Liu W Q, et al. Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells[J]. Journal of Materials Chemistry A, 2014, 2(21): 7727-7733.

[10] Yang X, Liu W Q, Xiong M, et al. Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells[J]. Journal of Materials Chemistry A, 2014, 2(36): 14798-14806.

[11] Yang X, Li J, Liang T, et al. Antibacterial activity of two-dimensional MoS2 sheets[J]. Nanoscale, 2014, 6(17): 10126-10133.

[12] Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325.

[13] Ji Q Q, Zhang Y, Zhang Y F, et al. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline[J]. Chemical Society Reviews, 2015, 44(9): 2587-2602.

[14] Liang T, Xie S, Huang Z T, et al. Elucidation of zero-dimensional to two-dimensional growth transition in MoS2 chemical vapor deposition synthesis[J]. Advanced Materials Interfaces, 2017, 4(4): 1600687.

[15] Xie S, Xu M S, Liang T, et al. A high-quality round-shaped monolayer MoS2 domain and its transformation[J]. Nanoscale, 2016, 8(1): 219-225.

[16] Liu B L, Fathi M, Chen L, et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study[J]. ACS Nano, 2015, 9(6): 6119-6127.

[17] Wang S S, Rong Y M, Fan Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition[J]. Chemistry of Materials, 2014, 26(22): 6371-6379.

[18] Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759.

[19] Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 2014, 8(1): 923-930.

[20] Wang X L, Gong Y J, Shi G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2[J]. ACS Nano, 2014, 8(5): 5125-5131.

[21] Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963-8971.

[22] Chen W, Zhao J, Zhang J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2[J]. Journal of the American Chemical Society, 2015, 137(50): 15632-15635.

[23] Liang T, He G Y, Huang G W, et al. Graphene nucleation preferentially at oxygen-rich Cu sites rather than on pure Cu surface[J]. Advanced Materials, 2015, 27(41): 6404-6410.

[24] Liang T, Luan C Y, Chen H Z, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735.

[25] Chen J Y, Tang W, Tian B B, et al. Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates[J]. Advanced Science, 2016, 3(8): 1600033.

[26] Gong Y J, Ye G L, Lei S D, et al. Synthesis of millimeter-scale transition metal dichalcogenides single crystals[J]. Advanced Functional Materials, 2016, 26(12): 2009-2015.

[27] van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials, 2013, 12(6): 554-561.

[28] Jeon J, Jang S K, Jeon S M, et al. Layer-controlled CVD growth of large-area two dimensional MoS2 films[J]. Nanoscale, 2015, 7: 1688-1695.

[29] Lee Y H, Yu L L, Wang H, et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces[J]. Nano Letters, 2013, 13(4): 1852-1857.

[30] Ling X, Lee Y H, Lin Y X, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition[J]. Nano Letters, 2014, 14(2): 464-472.

[31] Bilgin I, Liu F Z, Vargas A, et al. Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality[J]. ACS Nano, 2015, 9(9): 8822-8832.

[32] Ji Q Q, Zhang Y F, Gao T, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence[J]. Nano Letters, 2013, 13(8): 3870-3877.

[33] Zhang Y, Ji Q Q, Han G F, et al. Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications[J]. ACS Nano, 2014, 8(8): 8617-8624.

[34] Shi Y M, Zhou W, Lu A Y, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Letters, 2012, 12(6): 2784-2791.

[35] Zhang J, Yu H, Chen W, et al. Scalable growth of high-quality polycrystalline MoS2 monolayer on SiO2 with tunable grain sizes[J]. ACS Nano, 2014, 8(6): 6024-6030.

[36] Tu Z Y, Li G D, Ni X, et al. Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology[J]. Applied Physics Letters, 2016, 109(22): 223101.

[37] Kang K B, Xie S E, Huang L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660.

[38] Liu L N, Qiu H L, Wang J Y, et al. Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition[J]. Nanoscale, 2016, 8(8): 4486-4490.

[39] Zhang X T, Al Balushi Z Y, Zhang F, et al. Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films[J]. Journal of Electronic Materials, 2016, 45(12): 6273-6279.

[40] Zhan Y J, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971.

[41] Bai G X, Yuan S G, Zhao Y D, et al. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down-and up-conversion photoluminescence[J]. Advanced Materials, 2016, 28(34): 7472-7477.

[42] Kong D S, Wang H T, Cha J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3): 1341-1347.

[43] Wang H T, Kong D S, Johanes P, et al. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces[J]. Nano Letters, 2013, 13(7): 3426-3433.

[44] Jung Y W, Shen J, Liu Y H, et al. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2[J]. Nano Letters, 2014, 14(12): 6842-6849.

[45] Lin Y C, Zhang W J, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization[J]. Nanoscale, 2012, 4(20): 6637-6641.

[46] Elias A L, Perea-Lopez N, Castro-Beltran A, et al. Controlled synthesis and transfer of large-area WS2 sheets from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242.

[47] Liu K K, Zhang W J, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Letters, 2012, 12(3): 1538-1544.

[48] Hu D K, Xu G C, Xing L, et al. Two-dimensional semiconductors grown by chemical vapor transport[J]. Angewandte Chemie International Edition, 2017, 56(13): 3611-3615.

[49] Wu S F, Huang C M, Aivazian G, et al. Vapor solid growth of high optical quality MoS2 monolayers with near-unity valley polarization[J]. ACS Nano, 2013, 7(3): 2768-2772.

[50] Feng Q L, Mao N N, Wu J X, et al. Growth of MoS2(1-x)Se2x (x=0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition[J]. ACS Nano, 2015, 9(7): 7450-7455.

[51] Feng Q L, Zhu Y M, Hong J H, et al. Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys[J]. Advanced Materials, 2014, 26(17): 2648-2653.

[52] Tao J G, Chai J W, Lu X, et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering[J]. Nanoscale, 2015, 7(6): 2497-2503.

[53] Song J G, Park J, Lee W, et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition[J]. ACS Nano, 2013, 7(12): 11333-11340.

[54] Serna M I, Yoo S H, Moreno S, et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control[J]. ACS Nano, 2016, 10(6): 6054-6061.

[55] Cai Y, Yang X, Liang T, et al. Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution[J]. Nanotechnology, 2014, 25(46): 465401.

[56] Huang G W, Liu H, Wang S P, et al. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(47): 24128-24138.

[57] Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Physical Review B, 2011, 83(24): 245213.

[58] Tongay S, Zhou J, Ataca C, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2[J]. Nano Letters, 2012, 12(11): 5576-5580.

[59] Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Letters, 2013, 13(8): 3626-3630.

[60] He K L, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Letters, 2013, 13(6): 2931-2936.

[61] Zhu C R, Wang G, Liu B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2[J]. Physics Review B, 2013, 88(12): 121301.

[62] Buscema M, Steele G A, van der Zant H S J, et al. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2[J]. Nano Research, 2015, 7(4): 561-571.

[63] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physics Review B, 2012, 86(11): 115409.

[64] Komsa H P, Krasheninnikov A V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles[J]. Physical Review B, 2012, 86(24): 241201.

[65] Berkelbach T C, Hybertsen M S, Reichman D R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides[J]. Physical Review B, 2013, 88(4): 045318.

[66] Qiu D Y, Felipe H, Louie S G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states[J]. Physical Review Letters, 2013, 111(21): 216805.

[67] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

[68] Shang J Z, Shen X N, Cong C X, et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor[J]. ACS Nano, 2015, 9(1): 647-655.

[69] You Y M, Zhang X X, Berkelbach T C, et al. Observation of biexcitons in monolayer WSe2[J]. Nature Physics, 2015, 11(6): 477-481.

[70] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 2012, 3: 887-891.

[71] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

[72] Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles[J]. Physical Review B, 2012, 85(11): 115317.

[73] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[74] Fuhrer M S, Hone J. Measurement of mobility in dual-gated MoS2 transistors[J]. Nature Nanotechnology, 2013, 8(3): 146-147.

[75] Radisavljevic B, Kis A. Reply to ‘Measurement of mobility in dual-gated MoS2 transistors′[J]. Nature Nanotechnology, 2013, 8(3): 147-148.

[76] Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820.

[77] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308): 99-102.

[78] Suzuki K, Tanaka T, Tosaka Y, et al. Scaling theory for double-gate SOI MOSFET's[J]. IEEE Transactions on Electron Devices, 1993, 40(12): 2326-2329.

[79] Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492.

[80] Yin Z Y, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1): 74-80.

[81] Xia F N, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.

[82] Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044.

[83] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

[84] Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 2012, 12(7): 3695-3700.

[85] Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Advanced Materials, 2012, 24(43): 5832-5836.

[86] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.

[87] Krainak M A, Sun X L, Yang G N, et al. Comparison of linear-mode avalanche photodiode lidar receivers for use at one-micron wavelength[C]. SPIE, 2010, 7681: 76810Y.

[88] Zhang W J, Huang J K, Chen C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer[J]. Advanced Materials, 2013, 25(25): 3456-3461.

[89] Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed[J]. Nano Letters, 2015, 15(11): 7307-7313.

[90] Chernikov A, Berkelbach T C, Hill H M, et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 076802.

[91] Britnell L, Ribeiro R, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.

[92] Yu W J, Liu Y, Zhou H L, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nature Nanotechnology, 2013, 8(12): 952-958.

[93] Massicotte M, Schmidt P, Vialla F, et al. Picosecond photoresponse in van der Waals heterostructures[J]. Nature Nanotechnology, 2016, 11(1): 42-46.

[94] Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Scientific Reports, 2012, 3(15): 1634.

[95] Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nature Nanotechnology, 2014, 9(4): 268-272.

[96] Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nature Nanotechnology, 2014, 9(4): 257-261.

[97] Baugher B W H, Churchill H O H, Yang Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262-267.

[98] Xu Z Q, Zhang Y P, Wang Z Y, et al. Atomically thin lateral p-n junction photodetector with large effective detection area[J]. 2D Materials, 2016, 3(4): 041001.

[99] Furchi M M, Pospischil A, Libisch F, et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction[J]. Nano Letters, 2014, 14(8): 4785-4791.

[100] Lee C H, Lee G H, van der Zande A M, et al. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681.

[101] Cheng R, Li D H, Zhou H L, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Letters, 2014, 14(10): 5590-5597.

[102] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

[103] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2[J]. Nano Letters, 2013, 13(4): 1416-1421.

[104] Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 2015, 14(3): 301-306.

[105] Amani M, Lien D H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2[J]. Science, 2015, 350(6264): 1065-1068.