Main > Photonics Research >  Volume 8 >  Issue 6 >  Page 06000972 > Article
  • References
  • Abstract
  • Figures (6)
  • Tables (0)
  • Equations (1)
  • References (34)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jan. 23, 2020

    Accepted: Apr. 8, 2020

    Posted: Apr. 9, 2020

    Published Online: Jun. 1, 2020

    The Author Email: Chen Wei (cwei@uestc.edu.cn)

    DOI: 10.1364/PRJ.388930

  • Get Citation
  • Copy Citation Text

    Chen Wei, Liqiang Zhou, Dongsheng Wang, Hao Chi, Hua Huang, Han Zhang, Yong Liu. MXene-Ti3C2Tx for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser[J]. Photonics Research, 2020, 8(6): 06000972

    Download Citation

  • Category
  • Lasers and Laser Optics
  • Share

[1] I. Sorokina, F. K. Tittel, D. Richter, K. Vodopyanov, A. Fried. Mid-infrared laser applications in spectroscopy. Solid-State Mid-Infrared Laser Sources(2003).

[2] H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, R. Schleijpen. Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE, 5615, 27-38(2004).

[3] M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, P. Sloan. Laser-tissue interaction with a continuous wave 3-μm fibre laser: preliminary studies with soft tissue. Lasers Surg. Med., 26, 491-495(2000).

[4] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B, 27, B63-B92(2010).

[5] R. I. Woodward, M. R. Majewski, S. D. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 μm. APL Photon., 3, 116106(2018).

[6] C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

[7] C. Frerichs, U. B. Unrau. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7  μm. Opt. Fiber Technol., 2, 358-366(1996).

[8] J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, S. K. Turistyn. Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser. Laser Phys. Lett., 11, 065102(2014).

[9] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively Q-switched 2.8  μm nanosecond fiber laser. IEEE Photon. Technol. Lett., 24, 1741-1744(2012).

[10] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8  μm. IEEE Photon. Technol. Lett., 28, 7-10(2016).

[11] Z. Qin, G. Xie, J. Ma, P. Yuan, L. Qian. 2.8  μm all-fiber Q-switched and mode-locked lasers with black phosphorus. Photon. Res., 6, 1074-1078(2018).

[12] J. Liu, M. Wu, B. Huang, P. Tang, C. Zhao, D. Shen, D. Fan, S. K. Turitsyn. Widely wavelength-tunable mid-infrared fluoride fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 0900507(2018).

[13] H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, Y. Liu. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photon. Res., 6, 900-907(2018).

[14] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Two dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253(2011).

[15] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum. Two-dimensiona transition metal carbides. ACS Nano, 6, 1322-1331(2012).

[16] I. R. Shein, A. L. Ivanovskii. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci., 65, 104-114(2012).

[17] Y. Xie, P. R. C. Kent. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B, 87, 235441(2013).

[18] Y. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater., 29, 1702496(2017).

[19] Y. C. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, R. Podila. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater., 30, 1705714(2018).

[20] M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 12, 3578-3586(2018).

[21] M. Tuo, C. Xu, H. Mu, X. Bao, Y. Wang, S. Xiao, W. Ma, L. Li, D. Tang, H. Zhang, M. Premaratne, B. Sun, H. Cheng, S. Li, W. Ren, Q. Bao. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photon., 5, 1808-1816(2018).

[22] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T=F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

[23] J. Yi, L. Du, J. Li, L. Yang, L. Hu, S. Huang, Y. Dong, L. Miao, S. Wen, V. N. Mochalin, C. Zhao, A. M. Rao. Unleashing the potential of Ti2CTx MXene as a pulse modulator for mid-infrared fiber lasers. 2D Mater., 4, 045038(2019).

[24] Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, R. Podila. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater., 30, 1705714(2018).

[25] L. Wang, X. Li, C. Wang, W. Luo, T. Feng, Y. Zhang, H. Zhang. Few-layer Mxene Ti3C2Tx (T=F, O, or OH) for robust pulse generation in a compact Er-doped fiber laser. ChemNanoMat, 5, 1233-1238(2019).

[26] C. Shi, M. Beidaghi, M. Naguib, O. Mashtalir, Y. Gogotsi, S. J. Billinge. Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. Phys. Rev. Lett., 112, 125501(2014).

[27] J. Zhang, D. H. Li, R. J. Chen, Q. H. Xiong. Laser cooling of a semiconductor by 40 kelvin. Nature, 493, 504-508(2013).

[28] D. H. Li, J. Zhang, Q. H. Xiong. Laser cooling of CdS nanobelts: thickness matters. Opt. Express, 21, 19302-19310(2013).

[29] P. Tang, M. Wu, Q. Wang, L. Miao, B. Huang, J. Liu, C. Zhao, S. Wen. 2.8 μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator. IEEE Photon. Technol. Lett., 28, 1573-1576(2016).

[30] Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, L. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

[31] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

[32] C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, N. Peyghambarian. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser. Opt. Lett., 38, 3233-3236(2013).

[33] G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm. Opt. Mater. Express, 3, 1365-1377(2013).

[34] J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, Y. Liu. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett., 40, 3659-3662(2015).

Please Enter Your Email: