Main > Photonics Research >  Volume 8 >  Issue 11 >  Page 11000A72 > Article
  • References
  • Abstract
  • Figures (14)
  • Tables (1)
  • Equations (3)
  • References (148)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Jun. 23, 2020

    Accepted: Sep. 7, 2020

    Posted: Sep. 8, 2020

    Published Online: Oct. 30, 2020

    The Author Email: Xinfeng Liu (liuxf@nanoctr.cn)

    DOI: 10.1364/PRJ.400259

  • Get Citation
  • Copy Citation Text

    Shuai Zhang, Yangguang Zhong, Fan Yang, Qinxuan Cao, Wenna Du, Jianwei Shi, Xinfeng Liu. Cavity engineering of two-dimensional perovskites and inherent light-matter interaction[J]. Photonics Research, 2020, 8(11): 11000A72

    Download Citation

  • Special Issue
  • PEROVSKITE PHOTONICS
  • Share

[1] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Confined Electrons and Photons, 839(1995).

[2] LagoudakisK., The Physics of Exciton-Polariton Condensates (PPUR Polytechniques, 2013).

[3] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061-1073(2016).

[4] Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, K. Zhu. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater., 3, 18017(2018).

[5] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).

[6] L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, E. H. Sargent. Perovskites for next-generation optical sources. Chem. Rev., 119, 7444-7477(2019).

[7] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 8, 506-514(2014).

[8] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

[9] K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, J. J. Berry. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett., 1, 360-366(2016).

[10] B. R. Sutherland, E. H. Sargent. Perovskite photonic sources. Nat. Photonics, 10, 295-302(2016).

[11] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc., 137, 7843-7850(2015).

[12] C. M. M. Soe, G. P. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T. J. Marks, A. Navrotsky, A. D. Mohite, C. C. Stoumpos, M. G. Kanatzidis. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. USA, 116, 58-66(2019).

[13] J. C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G. T. Noe, J. Kono, S. Tretiak, S. A. Crooker, C. Katan, M. G. Kanatzidis, J. J. Crochet, J. Even, A. D. Mohite. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 9, 2254(2018).

[14] S. Deng, E. Shi, L. Yuan, L. Jin, L. Dou, L. Huang. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun., 11, 664(2020).

[15] Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, Q. Bao. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci., 1, 268-287(2019).

[16] V. Ardizzone, L. De Marco, M. De Giorgi, L. Dominici, D. Ballarini, D. Sanvitto. Emerging 2D materials for room-temperature polaritonics. Nanophotonics, 8, 1547-1558(2019).

[17] W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, G. Ran. Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature. Appl. Phys. Lett., 114, 131107(2019).

[18] Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, M. Li. Lasing from mechanically exfoliated 2D homologous Ruddlesden-Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 31, 1903030(2019).

[19] C. Lan, Z. Zhou, R. Wei, J. C. Ho. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy, 11, 61-82(2019).

[20] S. Roy, A. S. Sharbirin, Y. Lee, W. B. Kim, T. S. Kim, K. Cho, K. Kang, H. S. Jung, J. Kim. Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films. Nanomaterials, 10, 1032(2020).

[21] X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V. L. Colvin, W. W. Yu, Y. Zhang. Ruddlesden-Popper perovskites: synthesis and optical properties for optoelectronic applications. Adv. Sci., 6, 1900941(2019).

[22] Y.-H. Chang, J.-C. Lin, Y.-C. Chen, T.-R. Kuo, D.-Y. Wang. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett., 13, 247(2018).

[23] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 11, 872-877(2016).

[24] Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, Y. Chen, W. Huang. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A, 7, 13860-13872(2019).

[25] H. Li, T. Luo, S. Zhang, Z. Sun, X. He, W. Zhang, H. Chang. Two‐dimensional metal‐halide perovskite‐based optoelectronics: synthesis, structure, properties and applications. Energy Environ. Mater.(2020).

[26] X. Han, Y. Zheng, S. Chai, S. Chen, J. Xu. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 9, 38(2020).

[27] J. Yan, W. Qiu, G. Wu, P. Heremans, H. Chen. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A, 6, 11063-11077(2018).

[28] D. Ramirez, J. I. Uribe, L. Francaviglia, P. Romero-Gomez, A. F. I. Morral, F. Jaramillo. Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10thin films. J. Mater. Chem. C, 6, 6216-6221(2018).

[29] T. Schmidt, K. Lischka, W. Zulehner. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B, 45, 8989-8994(1992).

[30] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun., 7, 10896(2016).

[31] M.-G. La-Placa, G. Longo, A. Babaei, L. Martínez-Sarti, M. Sessolo, H. J. Bolink. Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control. Chem. Commun., 53, 8707-8710(2017).

[32] W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun, X. Hu. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale, 10, 8329-8337(2018).

[33] A. Fieramosca, L. De Marco, M. Passoni, L. Polimeno, A. Rizzo, B. L. Rosa, G. Cruciani, L. Dominici, M. De Giorgi, G. Gigli. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photon., 5, 4179-4185(2018).

[34] R. A. DeCrescent, N. R. Venkatesan, C. J. Dahlman, R. M. Kennard, M. L. Chabinyc, J. A. Schuller. Optical constants and effective-medium origins of large optical anisotropies in layered hybrid organic/inorganic perovskites. ACS Nano, 13, 10745-10753(2019).

[35] Z. Guo, X. Wu, T. Zhu, X. Zhu, L. Huang. Electron-phonon scattering in atomically thin 2D perovskites. ACS Nano, 10, 9992-9998(2016).

[36] S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, A. R. S. Kandada. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater., 2, 064605(2018).

[37] J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, M. D. Fayer. Dynamically disordered lattice in a layered Pb-I-SCN perovskite thin film probed by two-dimensional infrared spectroscopy. J. Am. Chem. Soc., 140, 9882-9890(2018).

[38] L. Ni, U. Huynh, A. Cheminal, T. H. Thomas, R. Shivanna, T. F. Hinrichsen, S. Ahmad, A. Sadhanala, A. Rao. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano, 11, 10834-10843(2017).

[39] D. B. Straus, S. Hurtado Parra, N. Iotov, J. Gebhardt, A. M. Rappe, J. E. Subotnik, J. M. Kikkawa, C. R. Kagan. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc., 138, 13798-13801(2016).

[40] F. Thouin, D. A. Valverde-Chávez, C. Quarti, D. Cortecchia, I. Bargigia, D. Beljonne, A. Petrozza, C. Silva, A. R. S. Kandada. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater., 18, 349-356(2019).

[41] P. Guo, C. C. Stoumpos, L. Mao, S. Sadasivam, J. B. Ketterson, P. Darancet, M. G. Kanatzidis, R. D. Schaller. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun., 9, 2019(2018).

[42] X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater., 17, 550-556(2018).

[43] M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, H. I. Karunadasa. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chem. Sci., 8, 4497-4504(2017).

[44] D. Cortecchia, S. Neutzner, A. R. Srimath Kandada, E. Mosconi, D. Meggiolaro, F. De Angelis, C. Soci, A. Petrozza. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem. Soc., 139, 39-42(2017).

[45] T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, H. I. Karunadasa. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett., 7, 2258-2263(2016).

[46] D. O’carroll, I. Lieberwirth, G. Redmond. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotechnol., 2, 180-184(2007).

[47] H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, H. B. Sun. Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array. Laser Photon. Rev., 7, 281-288(2013).

[48] S. Noda, F. T. Mahi, H. Zappe. Photonic crystals. Reference Module in Materials Science and Materials Engineering, 1-11(2016).

[49] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. Skolnick, V. Astratov, J. Roberts, A. V. Kavokin, M. R. Vladimirova, M. Kaliteevski. Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities. Phys. Solid State, 41, 1223-1238(1999).

[50] Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng, Z. Xu, X. Zhang, R. Munir, J. Liu, P. Zuo, Q. Li, M. Hu, L. Meng, K. Wang, D.-M. Smilgies, G. Zhao, H. Xu, Z. Yang, A. Amassian, J. Li, K. Zhao, S. Liu. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun., 9, 5302(2018).

[51] Y. Zhang, Y. Liu, Z. Xu, H. Ye, Q. Li, M. Hu, Z. Yang, S. Liu. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector. J. Mater. Chem. C, 7, 1584-1591(2019).

[52] Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, G. D. Scholes. Structure‐tuned lead halide perovskite nanocrystals. Adv. Mater., 28, 566-573(2016).

[53] D. Ghoshal, T. Wang, H. Z. Tsai, S. W. Chang, M. Crommie, N. Koratkar, S. F. Shi. Catalyst‐free and morphology‐controlled growth of 2D perovskite nanowires for polarized light detection. Adv. Opt. Mater., 7, 1900039(2019).

[54] A. Kooijman, L. A. Muscarella, R. M. Williams. Perovskite thin film materials stabilized and enhanced by zinc (II) doping. Appl. Sci., 9, 1678(2019).

[55] S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, X. Liu. Growth of metal halide perovskite materials. Sci. China Mater., 63, 1438-1463(2020).

[56] X. Zhang, H. Shi, H. Dai, X. Zhang, X. W. Sun, Z. Zhang. Exciton-polariton properties in planar microcavity of millimeter-sized two-dimensional perovskite sheet. ACS Appl. Mater. Interfaces, 12, 5081-5089(2020).

[57] C. M. Raghavan, T.-P. Chen, S.-S. Li, W.-L. Chen, C.-Y. Lo, Y.-M. Liao, G. Haider, C.-C. Lin, C.-C. Chen, R. Sankar. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett., 18, 3221-3228(2018).

[58] A. Brehier, R. Parashkov, J. S. Lauret, E. Deleporte. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 89, 171110(2006).

[59] Z. Han, H.-S. Nguyen, F. Boitier, Y. Wei, K. Abdel-Baki, J.-S. Lauret, J. Bloch, S. Bouchoule, E. Deleporte. High-Q planar organic-inorganic perovskite-based microcavity. Opt. Lett., 37, 5061-5063(2012).

[60] J. Wang, R. Su, J. Xing, D. Bao, C. Diederichs, S. Liu, T. C. Liew, Z. Chen, Q. Xiong. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 12, 8382-8389(2018).

[61] H. Zhang, Q. Liao, Y. Wu, Z. Zhang, Q. Gao, P. Liu, M. Li, J. Yao, H. Fu. 2D Ruddlesden-Popper perovskites microring laser array. Adv. Mater., 30, 1706186(2018).

[62] N. H. M. Dang, D. Gerace, E. Drouard, G. Trippé-Allard, F. Lédée, R. Mazurczyk, E. Deleporte, C. Seassal, H. S. Nguyen. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett., 20, 2113-2119(2020).

[63] H. Dong, C. Zhang, X. Liu, J. Yao, Y. S. Zhao. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev., 49, 951-982(2020).

[64] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 28, 2852-2867(2016).

[65] K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, Z. Chen. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater., 17, 908-914(2018).

[66] K. Tanaka, T. Kondo. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater., 4, 599-604(2003).

[67] T. Dammak, S. Elleuch, H. Bougzhala, A. Mlayah, R. Chtourou, Y. Abid. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6. J. Lumin., 129, 893-897(2009).

[68] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, P. Yang. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349, 1518-1521(2015).

[69] E. Shi, B. Yuan, S. B. Shiring, Y. Gao, , Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie, Y. Yu, L. Dou. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 580, 614-620(2020).

[70] D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei, S. Jin. Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics. Nano Res., 10, 2117-2129(2017).

[71] W. Niu, L. A. Ibbotson, D. Leipold, E. Runge, G. V. Prakash, J. J. Baumberg. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Phys. Rev. B, 91, 161303(2015).

[72] F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, S. Brovelli. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics, 8, 392-399(2014).

[73] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

[74] L.-C. Chen, C.-H. Tien, Z.-L. Tseng, Y.-S. Dong, S. Yang. Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials, 12, 985(2019).

[75] L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, H. Zhong. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett., 10, 3248-3253(2019).

[76] H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 536, 312-316(2016).

[77] H. Zhang, Y. Wu, Q. Liao, Z. Zhang, Y. Liu, Q. Gao, P. Liu, M. Li, J. Yao, H. Fu. A two‐dimensional Ruddlesden-Popper perovskite nanowire laser array based on ultrafast light‐harvesting quantum wells. Angew. Chem., 130, 7874-7878(2018).

[78] D. I. Babic, S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron., 28, 514-524(1992).

[79] ChoyH. K. H., Design and Fabrication of Distributed Bragg Reflectors for Vertical-Cavity Surface-Emitting Lasers (Massachusetts Institute of Technology, 1998).

[80] A. Brehier, R. Parashkov, J.-S. Lauret, E. Deleporte. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 89, 171110(2006).

[81] G. Lanty, A. Brehier, R. Parashkov, J.-S. Lauret, E. Deleporte. Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys., 10, 065007(2008).

[82] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314-3317(1992).

[83] M. Brodin, M. Matsko. Polariton effects in luminescence from ZnTe crystals: surface and bulk polaritons. Solid State Commun., 35, 375-377(1980).

[84] R. André, D. Heger, L. S. Dang, Y. M. d’Aubigné. Spectroscopy of polaritons in CdTe-based microcavities. J. Cryst. Growth, 184, 758-762(1998).

[85] H. Mathieu, Y. Chen, J. Camassel, J. Allegre, D. Robertson. Excitons and polaritons in InP. Phys. Rev. B, 32, 4042-4051(1985).

[86] G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, P. Lugli. Room-temperature polariton lasers based on GaN microcavities. Appl. Phys. Lett., 81, 412-414(2002).

[87] Y.-Y. Lai, Y.-P. Lan, T.-C. Lu. Strong light-matter interaction in ZnO microcavities. Light Sci. Appl., 2, e76(2013).

[88] T. Yao, J.-H. Song, S.-K. Hong. Optical properties of GaN and ZnO. Oxide and Nitride Semiconductors: Processing, Properties, and Applications, 311-354(2009).

[89] M. Litinskaya. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B, 77, 155325(2008).

[90] Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, P. N. Prasad. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep., 795, 1-51(2019).

[91] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater., 6, 1701032(2018).

[92] W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, X. Liu. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photon., 5, 2051-2059(2018).

[93] Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, Z. Wang. Transition between exciton-polariton and coherent photonic lasing in all-inorganic perovskite microcuboid. ACS Photon., 7, 454-462(2020).

[94] Q. Shang, C. Li, S. Zhang, Y. Liang, Z. Liu, X. Liu, Q. Zhang. Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett., 20, 1023-1032(2020).

[95] R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 17, 3982-3988(2017).

[96] S. Zhang, J. Chen, J. Shi, L. Fu, W. Du, X. Sui, Y. Mi, Z. Jia, F. Liu, J. Shi. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity. ACS Photon., 7, 327-337(2020).

[97] W. Du, S. Zhang, Q. Zhang, X. Liu. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv. Mater., 31, 1804894(2019).

[98] T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, X. Y. Zhu. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 6, 1700982(2018).

[99] Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, Q. Zhang. Role of the exciton-polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett., 20, 6636-6646(2020).

[100] T. Fujita, Y. Sato, T. Kuitani, T. Ishihara. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B, 57, 12428-12434(1998).

[101] K. Pradeesh, J. Baumberg, G. V. Prakash. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity. Opt. Express, 17, 22171-22178(2009).

[102] A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, D. Gerace. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 5, eaav9967(2019).

[103] P. M. Walker, L. Tinkler, D. V. Skryabin, A. Yulin, B. Royall, I. Farrer, D. A. Ritchie, M. S. Skolnick, D. N. Krizhanovskii. Ultra-low-power hybrid light-matter solitons. Nat. Commun., 6, 8317(2015).

[104] L. K. Van Vugt, B. Piccione, R. Agarwal. Incorporating polaritonic effects in semiconductor nanowire waveguide dispersion. Appl. Phys. Lett., 97, 061115(2010).

[105] M. Vladimirova, S. Cronenberger, D. Scalbert, K. Kavokin, A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech, A. Kavokin. Polariton-polariton interaction constants in microcavities. Phys. Rev. B, 82, 075301(2010).

[106] L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, D. Sanvitto. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 8, 2000176(2020).

[107] J. Chen, W. Du, J. Shi, M. Li, Y. Wang, Q. Zhang, X. Liu. Perovskite quantum dot lasers. InfoMat, 2, 170-183(2020).

[108] Y. Mi, Y. Zhong, Q. Zhang, X. Liu. Continuous‐wave pumped perovskite lasers. Adv. Opt. Mater., 7, 1900544(2019).

[109] Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, Q. Xiong. Advances in small perovskite‐based lasers. Small Methods, 1, 1700163(2017).

[110] C. Li, Z. Liu, Q. Shang, Q. Zhang. Surface‐plasmon‐assisted metal halide perovskite small lasers. Adv. Opt. Mater., 7, 1900279(2019).

[111] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 13, 476-480(2014).

[112] T. Kondo, T. Azuma, T. Yuasa, R. Ito. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun., 105, 253-255(1998).

[113] G. Grancini, M. K. Nazeeruddin. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater., 4, 4-22(2019).

[114] M. Saba, F. Quochi, A. Mura, G. Bongiovanni. Excited state properties of hybrid perovskites. Acc. Chem. Res., 49, 166-173(2016).

[115] M. N. Saha, A. Fowler. On a physical theory of stellar spectra. Proc. R. Soc. London Series A, 99, 135-153(1921).

[116] J. S. Manser, J. A. Christians, P. V. Kamat. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev., 116, 12956-13008(2016).

[117] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann. Correlated electron-hole plasma in organometal perovskites. Nat. Commun., 5, 5049(2014).

[118] A. P. Schlaus, M. S. Spencer, X. Zhu. Light-matter interaction and lasing in lead halide perovskites. Acc. Chem. Res., 52, 2950-2959(2019).

[119] W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, X. Liu. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 11, 3145-3153(2019).

[120] D. Marongiu, M. Saba, F. Quochi, A. Mura, G. Bongiovanni. The role of excitons in 3D and 2D lead halide perovskites. J. Mater. Chem. C, 7, 12006-12018(2019).

[121] M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, H. Fu. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv. Func. Mater., 28, 1707006(2018).

[122] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. Wong, E. H. Sargent. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 8, 10947-10952(2014).

[123] W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. Mhaisalkar, T. C. Sum. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys. Chem. Chem. Phys., 18, 14701-14708(2016).

[124] Z. Liu. Research progress of low-dimensional metal halide perovskites for lasing applications. Chin. Phys. B, 27, 114209(2018).

[125] G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum, W. Huang. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun., 8, 14558(2017).

[126] H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, R. P. Chang. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278-2281(1999).

[127] M. Leonetti, C. Conti, C. Lopez. The mode-locking transition of random lasers. Nat. Photonics, 5, 615-617(2011).

[128] BaranovA.TourniéE., Semiconductor Lasers: Fundamentals and Applications (Elsevier, 2013).

[129] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, H. Fu. Perovskite microdisk microlasers self-assembled from solution. Adv. Mater., 27, 3405-3410(2015).

[130] W. Zhang, L. Peng, J. Liu, A. Tang, J. S. Hu, J. Yao, Y. S. Zhao. Controlling the cavity structures of two‐photon‐pumped perovskite microlasers. Adv. Mater., 28, 4040-4046(2016).

[131] C. J. Chang-Hasnain. Tunable VCSEL. IEEE J. Sel. Top. Quantum Electron., 6, 978-987(2000).

[132] S. Chen, C. Zhang, J. Lee, J. Han, A. Nurmikko. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers. Adv. Mater., 29, 1604781(2017).

[133] Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun. Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals. Adv. Func. Mater., 27, 1605088(2017).

[134] E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, F. Deschler. Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites. Adv. Opt. Mater., 6, 1800616(2018).

[135] Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X.-Y. Zhu, S. Jin. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 4, 169-188(2019).

[136] W. Liu, X. Li, Y. Song, C. Zhang, X. Han, H. Long, B. Wang, K. Wang, P. Lu. Cooperative enhancement of two‐photon‐absorption‐induced photoluminescence from a 2D perovskite‐microsphere hybrid dielectric structure. Adv. Funct. Mater., 28, 1707550(2018).

[137] H. Yang, R. Trouillon, G. Huszka, M. A. Gijs. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 16, 4862-4870(2016).

[138] Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang, L. Li. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays. Opt. Express, 22, 23552-23564(2014).

[139] Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng. Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 12, 5622-5632(2016).

[140] B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, Q. Gong. Plasmonic‐functionalized broadband perovskite photodetector. Adv. Opt. Mater., 6, 1701271(2018).

[141] C.-K. Lim, Q. Li, T. Zhang, T. Thomay, A. N. Cartwright, M. T. Swihart, P. N. Prasad. Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker. Sol. Energy Mater. Sol. Cells, 176, 30-35(2018).

[142] A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, A. Di Carlo. Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells. Adv. Opt. Mater., 6, 1800576(2018).

[143] J. Feng, C. Gong, H. Gao, W. Wen, Y. Gong, X. Jiang, B. Zhang, Y. Wu, Y. Wu, H. Fu, L. Jiang, X. Zhang. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 1, 404-410(2018).

[144] J. Bao, V. G. Hadjiev. Origin of luminescent centers and edge states in low-dimensional lead halide perovskites: controversies, challenges and instructive approaches. Nano-Micro Lett., 11, 26(2019).

[145] B. Piccione, C.-H. Cho, L. K. van Vugt, R. Agarwal. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol., 7, 640-645(2012).

[146] X. Guo, Y. Ying, L. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 47, 656-666(2014).

[147] S. Kim, R. Yan. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C, 6, 11795-11816(2018).

[148] Y. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu. Chiral perovskites: promising materials toward next‐generation optoelectronics. Small, 15, 1902237(2019).

Please Enter Your Email: