Main > Advanced Photonics >  Volume 2 >  Issue 2 >  Page 026003 > Article
  • References
  • Abstract
  • Figures (7)
  • Tables (0)
  • Equations (5)
  • References (89)
  • Suppl. Mat.
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Mar. 15, 2020

    Accepted: Apr. 13, 2020

    Posted: Apr. 30, 2020

    Published Online: Apr. 30, 2020

    The Author Email: Xu Lei (lei.xu@ntu.ac.uk), Rahmani Mohsen (mohsen.rahmani@anu.edu.au), Ma Yixuan (yixuanma@mail.nankai.edu.cn), Smirnova Daria A. (daria.smirnova@anu.edu.au), Kamali Khosro Zangeneh (khosro.zangeneh@anu.edu.au), Deng Fu (u_deng@foxmail.com), Chiang Yan Kei (y.chiang@adfa.edu.au), Huang Lujun (lujun.huang@adfa.edu.au), Zhang Haoyang (zhangh49@qut.edu.au), Gould Stephen (stephen.gould@anu.edu.au), Neshev Dragomir N. (Dragomir.neshev@anu.edu.au), Miroshnichenko Andrey E. (andrey.miroshnichenko@unsw.edu.au)

    DOI: 10.1117/1.AP.2.2.026003

  • Get Citation
  • Copy Citation Text

    Lei Xu, Mohsen Rahmani, Yixuan Ma, Daria A. Smirnova, Khosro Zangeneh Kamali, Fu Deng, Yan Kei Chiang, Lujun Huang, Haoyang Zhang, Stephen Gould, Dragomir N. Neshev, Andrey E. Miroshnichenko. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003

    Download Citation

  • Category
  • Research Articles
  • Share

[1] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).

[2] C. U. Hail, et al.. Optical metasurfaces: evolving from passive to adaptive. Adv. Opt. Mater., 7, 1801786(2019).

[3] S. Chang, X. Guo, X. Ni. Optical metasurfaces: progress and applications. Annu. Rev. Mater. Res., 48, 279-302(2018).

[4] A. I. Kuznetsov, et al.. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

[5] M. Rahmani, et al.. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

[6] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257(2010).

[7] B. Luk’yanchuk, et al.. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

[8] V. V. Khardikov, E. O. Iarko, S. L. Prosvirnin. A giant red shift and enhancement of the light confinement in a planar array of dielectric bars. J. Opt., 14, 035103(2012).

[9] M. Rahmani, B. Luk’yanchuk, M. Hong. Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev., 7, 329-349(2013).

[10] M. Gupta, R. Singh. Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv. Opt. Mater., 4, 2119-2125(2016).

[11] Y. Yang, et al.. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

[12] V. R. Tuz, et al.. High-quality trapped modes in all-dielectric metamaterials. Opt. Express, 26, 2905-2916(2018).

[13] S. Campione, et al.. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces. ACS Photonics, 3, 2362-2367(2016).

[14] K. Z. Kamali, et al.. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small, 15, 1805142(2019).

[15] L. Xu, et al.. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv. Sci., 6, 1802119(2019).

[16] A. Jain, et al.. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms. Adv. Opt. Mater., 3, 1431-1438(2015).

[17] F. Hao, et al.. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 3, 643-652(2009).

[18] N. Liu, et al.. Three-dimensional plasmon rulers. Science, 332, 1407-1410(2011).

[19] F. Hao, et al.. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 8, 3983-3988(2008).

[20] K. Bao, N. A. Mirin, P. Nordlander. Fano resonances in planar silver nanosphere clusters. Appl. Phys. A, 100, 333-339(2010).

[21] N. J. Halas, et al.. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3961(2011).

[22] M. Hentschel, et al.. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett., 10, 2721-2726(2010).

[23] M. Rahmani, et al.. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Lett., 12, 2101-2106(2012).

[24] C. W. Hsu, et al.. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

[25] L. Carletti, et al.. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

[26] K. Koshelev, et al.. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

[27] M. Liu, D.-Y. Choi. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett., 18, 8062-8069(2018).

[28] Y. He, et al.. Toroidal dipole bound states in the continuum. Phys. Rev. B, 98, 161112(2018).

[29] K. Koshelev, et al.. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

[30] X. Luo, et al.. Excitation of high Q toroidal dipole resonance in an all-dielectric metasurface. Opt. Mater. Express, 10, 358-368(2020).

[31] L. Carletti, et al.. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys. Rev. Res., 1, 023016(2019).

[32] H. K. Gandhi, et al.. Gain-loss engineering of bound states in the continuum for enhanced nonlinear response in dielectric nanocavities. Opt. Express, 28, 3009-3016(2020).

[33] R. F. Ndangali, S. V. Shabanov. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders. J. Math. Phys., 51, 102901(2010).

[34] V. F. Gili, et al.. Monolithic AlGaAs second-harmonic nanoantennas. Opt. Express, 24, 15965-15971(2016).

[35] S. Liu, et al.. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett., 16, 5426-5432(2016).

[36] R. Camacho-Morales, et al.. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

[37] G. Grinblat, et al.. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano, 11, 953-960(2017).

[38] G. Grinblat, et al.. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett., 16, 4635-4640(2016).

[39] M. R. Shcherbakov, et al.. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett., 15, 6985-6990(2015).

[40] E. V. Melik-Gaykazyan, et al.. Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles. Philos. Trans. R. Soc. A, 375, 20160281(2017).

[41] E. V. Melik-Gaykazyan, et al.. Selective third-harmonic generation by structured light in Mie-resonant nanoparticles. ACS Photonics, 5, 728-733(2017).

[42] A. E. Miroshnichenko, et al.. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

[43] L. Xu, et al.. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci. Appl., 7, 44(2018).

[44] L. Carletti, et al.. Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt. Express, 23, 26544-26550(2015).

[45] S. Molesky, et al.. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

[46] D. Liu, et al.. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).

[47] A. Mirzaei, et al.. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett., 105, 011109(2014).

[48] C. C. Nadell, et al.. Deep learning for accelerated all-dielectric metasurface design. Opt. Express, 27, 27523-27535(2019).

[49] Y. Kiarashinejad, S. Abdollahramezani, A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput. Mater., 6, -12(2020).

[50] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

[51] K. Yao, R. Unni, Y. Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339-366(2019).

[52] Z. Liu, et al.. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica, 6, 1367-1373(2019).

[53] L. Gao, et al.. A bidirectional deep neural network for accurate silicon color design. Adv. Mater., 31, 1905467(2019).

[54] Q. Zhang, et al.. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 8, 42(2019).

[55] J. Jiang, J. A. Fan. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics(2019).

[56] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl. Mater. Interfaces, 11, 24264-24268(2019).

[57] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019).

[58] P. R. Wiecha, et al.. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237-244(2019).

[59] A. Y. Piggott, et al.. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

[60] T. Asano, S. Noda. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express, 26, 32704-32717(2018).

[61] G. Carleo, et al.. Machine learning and the physical sciences. Rev. Mod. Phys., 91, 045002(2019).

[62] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

[63] J. A.Hertz, Introduction to the Theory of Neural Computation, CRC Press, Boca Raton, Florida (2018).

[64] K. Hornik, et al.. Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366(1989).

[65] H. Aouani, et al.. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol., 9, 290-294(2014).

[66] J. Lee, et al.. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511, 65-69(2014).

[67] M. Merklein, et al.. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun., 6, 6396(2015).

[68] R. Pant, et al.. On-chip stimulated Brillouin scattering. Opt. Express, 19, 8285-8290(2011).

[69] R. Van Laer, et al.. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photonics, 9, 199-203(2015).

[70] G. Grinblat, et al.. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett., 14, 6660-6665(2014).

[71] F. Della Picca, et al.. Tailored hypersound generation in single plasmonic nanoantennas. Nano Lett., 16, 1428-1434(2016).

[72] H. Aouani, et al.. Unveiling the origin of third harmonic generation in hybrid ITO-plasmonic crystals. Adv. Opt. Mater., 3, 1059-1065(2015).

[73] Y. S. Chen, et al.. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett., 11, 348-354(2011).

[74] L. Moreaux, et al.. Coherent scattering in multi-harmonic light microscopy. Biophys. J., 80, 1568-1574(2001).

[75] F. Chollet. Keras: deep learning library for Theano and TensorFlow(2015).

[76] M. G. Moharam, et al.. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12, 1068-1076(1995).

[77] J. P. Hugonin, P. Lalanne. Reticolo software for grating analysis(2005).

[78] A. Arbabi, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

[79] J. Peurifoy, et al.. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

[80] I. S. Maksymov, A. E. Miroshnichenko. Active control over nanofocusing with nanorod plasmonic antennas. Opt. Express, 19, 5888-5894(2011).

[81] M. Galli, et al.. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett., 94, 071101(2009).

[82] F. Medeghini, et al.. Controlling the quality factor of a single acoustic nanoresonator by tuning its morphology. Nano Lett., 18, 5159-5166(2018).

[83] Y. Gan, Z. Sun. Crystal structure dependence of the breathing vibration of individual gold nanodisks induced by the ultrafast laser. Appl. Opt., 58, 213-218(2019).

[84] Y. Sun, et al.. Opto-mechanical interactions in nanoparticles with magnetic light(2016).

[85] A. Ivinskaya, et al.. Optomechanical manipulation with hyperbolic metasurfaces. ACS Photonics, 5, 4371-4377(2018).

[86] C. Yi, et al.. Polycrystallinity of lithographically fabricated plasmonic nanostructures dominates their acoustic vibrational damping. Nano Lett., 18, 3494-3501(2018).

[87] E.Shamonina, World Scientific Handbook of Metamaterials and Plasmonics, World Scientific, Oxford (2017).

[88] S. Makarov, et al.. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma. Nano Lett., 15, 6187-6192(2015).

[89] J. D.Jackson, Classical Electrodynamics, John Wiley & Sons, New York (1999).

Please Enter Your Email: