Main > Opto-Electronic Advances >  Volume 2 >  Issue 4 >  Page 180030-1 > Article

[1] Maier S A. Plasmonics: Fundamentals and Applications (Springer, New York, 2007)[note].

[2] Ueno K, Misawa H. Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles[J]. Phys Chem Chem Phys, 15, 4093-4099(2013).

[3] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. J Phys Chem B, 107, 668-677(2003).

[4] Halas N J, Lal S, Chang W S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures[J]. Chem Rev, 111, 3913-3961(2011).

[5] Wang X L, Gogol P, Cambril E, Palpant B. Near- and far-field effects on the plasmon coupling in gold nanoparticle arrays[J]. J Phys Chem C, 116, 24741-24747(2012).

[6] Song H F, Sun Q, Li J, Yang F, Yang J H, et al.. Exotic mode suppression in plasmonic heterotrimer system[J]. J Phys Chem C, 123, 1398-1405(2019).

[7] Barrow S J, Funston A M, Gomez D E, Davis T J, Mulvaney P. Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer[J]. Nano Lett, 11, 4180-4187(2011).

[8] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, et al.. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nat Mater, 2, 229-232(2003).

[9] Wei Q H, Su K H, Durant S, Zhang X. Plasmon resonance of finite one-dimensional Au nanoparticle chains[J]. Nano Lett, 4, 1067-1071(2004).

[10] Arnold M D, Blaber M G, Ford M J, Harris N. Universal scaling of local plasmons in chains of metal spheres[J]. Opt Express, 18, 7528-7542(2010).

[11] De Waele R, Koenderink A F, Polman A. Tunable nanoscale localization of energy on plasmon particle arrays[J]. Nano Lett, 7, 2004-2008(2007).

[12] Quinten M, Leitner A, Krenn J R, Aussenegg F R. Electromagnetic energy transport via linear chains of silver nanoparticles[J]. Opt Lett, 23, 1331-1333(1998).

[13] Willingham B, Link S. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes[J]. Opt Express, 19, 6450-6461(2011).

[14] Solis Jr D, Willingham B, Nauert S L, Slaughter L S, Olson J, et al.. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes[J]. Nano Lett, 12, 1349-1353(2012).

[15] Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit[J]. Phys Rev B, 62, R16356-R16359(2000).

[16] Maier S A, Kik P G, Atwater H A. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss[J]. Appl Phys Lett, 81, 1714-1716(2002).

[17] Maier S A, Brongersma M L, Kik P G, Atwater H A. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy[J]. Phys Rev B, 65, 193408(2002).

[18] Chen H Y, He C L, Wang C Y, Lin M H, Mitsui D, et al.. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes[J]. ACS Nano, 5, 8223-8229(2011).

[19] Pocock S R, Xiao X F, Huidobro P A, Giannini V. Topological plasmonic chain with retardation and radiative effects[J]. ACS Photonics, 5, 2271-2279(2018).

[20] Salerno M, Krenn J R, Hohenau A, Ditlbacher H, Schider G, et al.. The optical near-field of gold nanoparticle chains[J]. Opt Commun, 248, 543-549(2005).

[21] Shimada T, Imura K, Okamoto H, Kitajima M. Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy[J]. Phys Chem Chem Phys, 15, 4265-4269(2013).

[22] Kim S I, Imura K, Kim S, Okamoto H. Confined optical fields in nanovoid chain structures directly visualized by near-field optical imaging[J]. J Phys Chem C, 115, 1548-1555(2011).

[23] Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, et al.. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles[J]. Phys Rev Lett, 82, 2590-2593(1999).

[24] Coenen T, Vesseur E J R, Polman A, Koenderink A F. Directional emission from plasmonic yagi-uda antennas probed by angle-resolved cathodoluminescence spectroscopy[J]. Nano Lett, 11, 3779-3784(2011).

[25] Liu Z X, Jiang M L, Hu Y L, Lin F, Shen B, et al.. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures[J]. Opto, 1, 180007(2018).

[26] Kubo A, Onda K, Petek H, Sun Z J, Jung Y S, et al.. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film[J]. Nano Lett, 5, 1123-1127(2005).

[27] Kubo A, Pontius N, Petek H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface[J]. Nano Lett, 7, 470-475(2007).

[28] Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P, et al.. Coherent two-dimensional nanoscopy[J]. Science, 333, 1723-1726(2011).

[29] Douillard L, Charra F, Korczak Z, Bachelot R, Kostcheev S, et al.. Short range plasmon resonators probed by photoemission electron microscopy[J]. Nano Lett, 8, 935-940(2008).

[30] Schertz F, Schmelzeisen M, Mohammadi R, Kreiter M, Elmers H J, et al.. , 2012, Near field of strongly coupled plasmons: uncovering dark modes[J]. Nano Lett, 12, 1885-1890(2012).

[31] Könenkamp R, Word R C, Fitzgerald J P S, Nadarajah A, Saliba S. Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures[J]. Appl Phys Lett, 101, 141114(2012).

[32] Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y, et al.. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Sci Appl, 2, e118(2013).

[33] Yang J H, Sun Q, Ueno K, Shi X, Oshikiri T, et al.. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes[J]. Nat Commun, 9, 4858(2018).

[34] Yu H, Sun Q, Ueno K, Oshikiri T, Kubo A, et al.. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J]. ACS Nano, 10, 10373-10381(2016).

[35] Spektor G, Kilbane D, Mahro A K, Frank B, Ristok S, et al.. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J]. Science, 355, 1187-1191(2017).

[36] Ji B Y, Song X W, Dou Y P, Tao H Y, Gao X, et al.. Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution[J]. New J Phys, 20, 073031(2018).

[37] Ji B Y, Wang Q, Song X W, Tao H Y, Dou Y P, et al.. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy[J]. J Phys D: Appl Phys, 50, 415309(2017).

[38] Ueno K, Mizeikis V, Juodkazis S, Sasaki K, Misawa H. Optical properties of nanoengineered gold blocks[J]. Opt Lett, 30, 2158-2160(2005).

[39] Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H. Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths[J]. Adv Mater, 20, 26-30(2008).

[40] Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P, et al.. Enhancement of a two-photon-induced reaction in solution using light-harvesting gold nanodimer structures[J]. J Phys Chem Lett, 3, 1443-1447(2012).

[41] Rong K X, Gan F Y, Shi K B, Chu S S, Chen J J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides[J]. Adv Mater, 30, 1706546(2018).

[42] Wang M, Cao M, Chen X, Gu N. Subradiant plasmon modes in multilayer metal-dielectric nanoshells[J]. J Phys Chem C, 115, 20920-20925(2011).

[43] Liu M Z, Lee T W, Gray S K, Guyot-Sionnest P, Pelton M. Excitation of dark plasmons in metal nanoparticles by a localized emitter[J]. Phys Rev Lett, 102, 107401(2009).