Main > Photonics Research >  Volume 8 >  Issue 9 >  Page 09001532 > Article
  • References
  • Abstract
  • Figures (6)
  • Tables (1)
  • Equations (3)
  • References (42)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Feb. 7, 2020

    Accepted: Jul. 12, 2020

    Posted: Jul. 13, 2020

    Published Online: Sep. 3, 2020

    The Author Email: Feihu Xu (feihuxu@ustc.edu.cn)

    DOI: 10.1364/PRJ.390091

  • Get Citation
  • Copy Citation Text

    Zheng-Ping Li, Xin Huang, Yuan Cao, Bin Wang, Yu-Huai Li, Weijie Jin, Chao Yu, Jun Zhang, Qiang Zhang, Cheng-Zhi Peng, Feihu Xu, Jian-Wei Pan. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 2020, 8(9): 09001532

    Download Citation

  • Category
  • Quantum Optics
  • Share

[1] R. M. Marino, W. R. Davis. Jigsaw: a foliage-penetrating 3D imaging laser radar system. Lincoln Lab. J., 15, 23-36(2005).

[2] B. Schwarz. Lidar: mapping the world in 3D. Nat. Photonics, 4, 429-430(2010).

[3] C. L. Glennie, W. E. Carter, R. L. Shrestha, W. E. Dietrich. Geodetic imaging with airborne lidar: the Earth’s surface revealed. Rep. Prog. Phys., 76, 086801(2013).

[4] D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, T. C. Duxbury. Topography of the northern hemisphere of mars from the mars orbiter laser altimeter. Science, 279, 1686-1692(1998).

[5] W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, C. Webb. The ICESat-2 laser altimetry mission. Proc. IEEE, 98, 735-751(2010).

[6] A. B. Gschwendtner, W. E. Keicher. Development of coherent laser radar at Lincoln Laboratory. Lincoln Lab. J., 12, 383-396(2000).

[7] G. Buller, A. Wallace. Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition. IEEE J. Sel. Top. Quantum Electron., 13, 1006-1015(2007).

[8] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

[9] J. A. Richardson, L. A. Grant, R. K. Henderson. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photon. Technol. Lett, 21, 1020-1022(2009).

[10] F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, W. Brockherde. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J. Sel. Top. Quantum Electron., 20, 364-373(2014).

[11] A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, G. S. Buller. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Appl. Opt., 48, 6241-6251(2009).

[12] A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, G. S. Buller. Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection. Opt. Express, 21, 8904-8915(2013).

[13] Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, G. Wu. Multi-beam single-photon-counting three-dimensional imaging lidar. Opt. Express, 25, 10189-10195(2017).

[14] S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, J. Leach. Long-range depth imaging using a single-photon detector array and non-local data fusion. Sci. Rep., 9, 8075(2019).

[15] W. Wagner, A. Ullrich, V. Ducic, T. Melzer, N. Studnicka. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens., 60, 100-112(2006).

[16] A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, V. K. Goyal. First-photon imaging. Science, 343, 58-61(2014).

[17] Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, D. Faccio. Quantum-inspired computational imaging. Science, 361, eaat2298(2018).

[18] D. Shin, A. Kirmani, V. K. Goyal, J. H. Shapiro. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors. IEEE Trans. Comput. Imaging, 1, 112-125(2015).

[19] Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin. Lidar waveform-based analysis of depth images constructed using sparse single-photon data. IEEE Trans. Image Process., 25, 1935-1946(2016).

[20] D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, J. H. Shapiro. Photon-efficient imaging with a single-photon camera. Nat. Commun., 7, 12046(2016).

[21] J. Rapp, V. K. Goyal. A few photons among many: unmixing signal and noise for photon-efficient active imaging. IEEE Trans. Comput. Imaging, 3, 445-459(2017).

[22] D. B. Lindell, M. O’Toole, G. Wetzstein. Single-photon 3D imaging with deep sensor fusion. ACM Trans. Graph., 37, 113(2018).

[23] A. M. Pawlikowska, A. Halimi, R. A. Lamb, G. S. Buller. Single-photon three-dimensional imaging at up to 10  kilometers range. Opt. Express, 25, 11919-11931(2017).

[24] Z.-P. Li, X. Huang, P.-Y. Peng, Y. Hong, C. Yu, Y. Cao, J. Zhang, F. Xu, J.-W. Pan. Super-resolution single-photon imaging at 8.2  kilometers. Opt. Express, 28, 4076-4087(2020).

[25] M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, M. J. Padgett. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt. Express, 24, 10476-10485(2016).

[26] C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, J. W. Pan. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. Opt. Express, 25, 14611-14620(2017).

[27] M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, J. J. Zayhowski. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Lab. J., 13, 351-370(2002).

[28] S. Hernandez-Marin, A. M. Wallace, G. J. Gibson. Bayesian analysis of lidar signals with multiple returns. IEEE Trans. Pattern Anal. Mach. Intell., 29, 2170-2180(2007).

[29] D. Shin, J. H. Shapiro, V. K. Goyal. Photon-efficient super-resolution laser radar. Proc. SPIE, 10394, 1039409(2017).

[30] J. Tachella, Y. Altmann, S. McLaughlin, J.-Y. Tourneret. 3D reconstruction using single-photon lidar data exploiting the widths of the returns. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7815-7819(2019).

[31] D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, V. K. Goyal. Computational multi-depth single-photon imaging. Opt. Express, 24, 1873-1888(2016).

[32] J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, J.-Y. Tourneret. Bayesian 3D reconstruction of complex scenes from single-photon lidar data. SIAM J. Imaging Sci., 12, 521-550(2019).

[33] Z. T. Harmany, R. F. Marcia, R. M. Willett. This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice. IEEE Trans. Image Process., 21, 1084-1096(2012).

[34] DigonnetM. J., Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).

[35] https://github.com/quantum-inspired-lidar/long-range-photon-efficient-imaging.git.

[36] B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, G. Wu. High-speed photon-counting laser ranging for broad range of distances. Sci. Rep., 8, 4198(2018).

[37] R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, G. S. Buller. Three-dimensional single-photon imaging through obscurants. Opt. Express, 27, 4590-4611(2019).

[38] J. J. Degnan. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping. Remote Sens., 8, 958(2016).

[39] C. Bruschini, H. Homulle, I. Antolovic, S. Burri, E. Charbon. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl., 8, 87(2019).

[40] P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, G. S. Buller. High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement. Appl. Opt., 59, 4488-4498(2020).

[41] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, D. M. Cornwell. Overview and results of the lunar laser communication demonstration. Proc. SPIE, 8971, 89710S(2014).

[42] H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, X. Xie. Superconducting nanowire single photon detector at 532  nm and demonstration in satellite laser ranging. Opt. Express, 24, 3535-3542(2016).

Please Enter Your Email: