Main > Photonics Research >  Volume 8 >  Issue 7 >  Page 070000A1 > Article
  • References
  • Abstract
  • Figures (12)
  • Tables (2)
  • Equations (0)
  • References (77)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Mar. 19, 2020

    Accepted: Apr. 21, 2020

    Posted: Apr. 21, 2020

    Published Online: Jun. 23, 2020

    The Author Email: Jingbi You (jyou@semi.ac.cn)

    DOI: 10.1364/PRJ.392996

  • Get Citation
  • Copy Citation Text

    Yang Zhao, Fei Ma, Feng Gao, Zhigang Yin, Xingwang Zhang, Jingbi You. Research progress in large-area perovskite solar cells[J]. Photonics Research, 2020, 8(7): 070000A1

    Download Citation

  • Special Issue
  • PEROVSKITE PHOTONICS
  • Share

[1] K. Kojima, Y. Teshima, T. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

[2] H. Kim, C. Lee, J. H. Im, K. Lee, T. Moehl, A. Marchioro, S. Moon, R. Humphry-Baker, J. Yum, J. Moser, M. Gratzel, N. Park. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).

[3] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

[4] W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo, S. Seok. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234-1237(2015).

[5] D. Bi, C. Yi, J. Luo, J. D. Decoppet, F. Zhang, S. Zakeeruddin, X. Li, A. Hagfeldt, M. Gratzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 1, 16142(2016).

[6] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Uk Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. Il Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376-1379(2017).

[7] N. Jeon, H. Na, E. Jung, T.-Y. Yang, Y. Lee, G. Kim, H.-W. Shin, S. Seok, J. Lee, J. Seo. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 3, 682-689(2018).

[8] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460-466(2019).

[9] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.pdf.

[10] Q. Ye, Y. Zhao, S. Mu, P. Gao, X. Zhang, J. You. Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells. Sci. China Chem., 62, 810-821(2019).

[11] F. Gao, Y. Zhao, X. Zhang, J. You. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater., 10, 1902650(2019).

[12] J.-W. Lee, D.-K. Lee, D.-N. Jeong, N.-G. Park. Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater., 29, 1807047(2018).

[13] D. H. Kim, J. B. Whitaker, Z. Li, M. F. A. M. van Hest, K. Zhu. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule, 2, 1437-1451(2018).

[14] N.-G. Park. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater., 10, 1903106(2019).

[15] B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang, X. Li. Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A, 7, 4960-4970(2019).

[16] T. Bu, J. Li, F. Zheng, W. Chen, X. Wen, Z. Ku, Y. Peng, J. Zhong, Y.-B. Cheng, F. Huang. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun., 9, 4609(2018).

[17] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350, 944-948(2015).

[18] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Q. Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722-726(2017).

[19] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater., 29, 1703852(2017).

[20] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci., 8, 1544-1550(2015).

[21] Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy, 3, 560-566(2018).

[22] H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Grätzel, L. Han. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 550, 92-95(2017).

[23] http://www.microquanta.com/.

[24] M. A. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis, A. W. Y. Ho-Baillie. Solar cell efficiency tables (version 55). Prog. Photovolt. Res. Appl., 28, 3-15(2020).

[25] H. S. Jung, G. S. Han, N.-G. Park, M. J. Ko. Flexible perovskite solar cells. Joule, 3, 1850-1880(2019).

[26] Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan. Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv., 8, 10489-10508(2018).

[27] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. Il Seok. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476-480(2015).

[28] Z. Yang, C.-C. Chueh, F. Zuo, J. H. Kim, P.-W. Liang, A. K.-Y. Jen. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater., 5, 1500328(2015).

[29] Y. Deng, C. H. V. Brackle, X. Dai, J. Zhao, B. Chen, J. Huang. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv., 5, eaax7537(2019).

[30] J. B. Whitaker, D. H. Kim, B. W. Larson, F. Zhang, J. J. Berry, M. F. A. M. van Hest, K. Zhu. Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels, 2, 2442-2449(2018).

[31] D. Vak, K. Hwang, A. Faulks, Y.-S. Jung, N. Clark, D.-Y. Kim, G. J. Wilson, S. E. Watkins. 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Adv. Energy Mater., 5, 1401539(2014).

[32] K. Hwang, Y.-S. Jung, Y.-J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D.-Y. Kim, D. Vak. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater., 27, 1241-1247(2015).

[33] C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185-192(2018).

[34] F. D. Giacomo, S. Shanmugam, H. Fledderus, B. J. Bruijnaers, W. J. Verhees, M. S. Dorenkamper, S. C. Veenstra, W. Qiu, R. Gehlhaar, T. Merckx. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells, 181, 53-59(2018).

[35] J. G. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. A. Massede la Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, P. Heremans, J. Poortmans. Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J. Mater. Chem. A, 4, 3792-3797(2016).

[36] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, D. G. Lidzey. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci., 7, 2944-2950(2014).

[37] J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im. Highly efficient CH3NH3PbI3-xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A, 4, 17636-17642(2016).

[38] M. Park, W. Cho, G. Lee, S. C. Hong, M.-C. Kim, J. Yoon, N. Ahn, M. Choi. Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3. Small, 15, 1804005(2018).

[39] O. A. Basaran, H. Gao, P. P. Bhat. Nonstandard inkjets. Annu. Rev. Fluid Mech., 45, 85-113(2013).

[40] S. K. Karunakaran, G. M. Arumugam, W. Yang, S. Ge, S. N. Khan, X. Lin, G. Yang. Recent progress in inkjet-printed solar cells. J. Mater. Chem. A, 7, 13873-13902(2019).

[41] A. Priyadarshi, L. J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T. C. Sum, N. Mathews, S. G. Mhaisalkar. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci., 9, 3687-3692(2016).

[42] C. Liang, P. Li, H. Gu, Y. Zhang, F. Li, Y. Song, G. Shao, N. Mathews, G. Xing. One-step inkjet printed perovskite in air for efficient light harvesting. Sol. RRL, 2, 1700217(2018).

[43] P. Li, C. Liang, B. Bao, Y. Li, X. Hu, Y. Wang, Y. Zhang, F. Li, G. Shao, Y. Song. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 46, 203-211(2018).

[44] J.-E. Kim, S.-S. Kim, C. Zuo, M. Gao, D. Vak, D.-Y. Kim. Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive- assisted hot slot die deposition. Adv. Funct. Mater., 29, 1809194(2019).

[45] Y. Y. Kim, T.-Y. Yang, R. Suhonen, M. Välimäki, T. Maaninen, A. Kemppainen, N. J. Jeon, J. Seo. Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing. Adv. Sci., 6, 1802094(2019).

[46] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 353, 58-62(2016).

[47] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. Il Seok, M. D. McGehee, E. H. Sargent, H. Han. Challenges for commercializing perovskite solar cells. Science, 361, eaat8235(2018).

[48] Y. Zhao, Q. Ye, Z. Chu, F. Gao, X. Zhang, J. You. Recent progress in high-efficiency planar-structure perovskite solar cells. Energy Environ. Mater., 2, 93-106(2019).

[49] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci., 7, 2934-2938(2014).

[50] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater., 13, 897-903(2014).

[51] H.-C. Liao, P. Guo, C.-P. Hsu, M. Lin, B. Wang, L. Zeng, W. Huang, C. M. M. Soe, W.-F. Su, M. J. Bedzyk, M. R. Wasielewski, A. Facchetti, R. P. H. Chang, M. G. Kanatzidis, T. J. Marks. Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation. Adv. Energy Mater., 7, 1601660(2017).

[52] M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest, K. Zhu. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy, 2, 17038(2017).

[53] Z. Liu, L. Qiu, E. J. J. Perez, Z. Hawash, T. Kim, Y. Jiang, Z. Wu, S. R. Raga, L. K. Ono, S. F. Liu, Y. Qi. Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nat. Commun., 9, 3880(2018).

[54] M. Yang, Y. Zhou, Y. Zeng, C.-S. Jiang, N. P. Padture, K. Zhu. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater., 27, 6363-6370(2015).

[55] W. Qiu, T. Merckx, M. Jaysankar, C. Masse de la Huerta, L. Rakocevic, W. Zhang, U. W. Paetzold, R. Gehlhaar, L. Froyen, J. Poortmans, D. Cheyns, H. J. Snaith, P. Heremans. Pinhole-free perovskite films for efficient solar modules. Energy Environ. Sci., 9, 484-489(2016).

[56] T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.-B. Cheng, J. Zhong. Novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 10, 2509-2515(2017).

[57] L. Qiu, S. He, Y. Jiang, D.-Y. Son, L. K. Ono, Z. Liu, T. Kim, T. Bouloumis, S. Kazaoui, Y. Qi. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. A, 7, 6920-6929(2019).

[58] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin, A. K.-Y. Jen. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater., 26, 3748-3754(2014).

[59] G. Fu, L. Hou, Y. Wang, X. Liu, J. Wang, H. Li, Y. Cui, D. Liu, X. Li, S. Yang. Efficiency enhancement in planar CH3NH3PbI3–xClx perovskite solar cells by processing with bidentate halogenated additives. Sol. Energy Mater. Sol. Cells, 165, 36-44(2017).

[60] C. Liang, D. Zhao, Y. Li, X. Li, S. Peng, G. Shao, G. Xing. Ruddlesden–Popper perovskite for stable solar cells. Energy Environ. Mater., 1, 221-231(2018).

[61] C. Liang, D. Zhao, P. Li, B. Wu, H. Gu, J. Zhang, T. W. Goh, S. Chen, Y. Chen, Z. Sha, G. Shao, T. C. Sumb, G. Xing. Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 59, 721-729(2019).

[62] C. Liang, K. M. Muhammed Salim, P. Li, Z. Wang, T. M. Koh, H. Gu, B. Wu, J. Xia, Z. Zhang, K. Wang, T. Liu, Q. Wei, S. Wang, Y. Tang, G. Shao, Y. Song, N. Mathews, G. Xing. Controlling films structure by regulating 2D Ruddlesden-Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. J. Mater. Chem. A, 8, 5874-5881(2020).

[63] P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao, Y. Song. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Adv. Mater., 30, 1805323(2018).

[64] J. Feng, Z. Yang, D. Yang, X. Ren, X. Zhu, Z. Jin, W. Zi, Q. Wei, S. F. Liu. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy, 36, 1-8(2017).

[65] C. Liang, Z. Wu, P. Li, J. Fan, Y. Zhang, G. Shao. Making high-quality CTLs is as important as making high-quality perovskite films to achieve efficient and stable PSCs. Appl. Surf. Sci., 391, 337-341(2017).

[66] J. Sun, J. Lu, B. Li, L. Jiang, A. S. R. Chesman, A. D. Scully, T. R. Gengenbach, Y.-B. Cheng, J. J. Jasieniak. Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy, 49, 163-171(2018).

[67] X. Ren, L. Xie, W. B. Kim, D. G. Lee, H. S. Jung, S. F. Liu. Chemical bath deposition of co-doped TiO2 electron transport layer for hysteresis-suppressed high-efficiency planar perovskite solar cells. Sol. RRL, 3, 1900176(2019).

[68] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295-298(2014).

[69] Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, H. Han. Stable large-area (10 × 10  cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL, 1, 1600019(2017).

[70] B. Dou, J. B. Whitaker, K. Bruening, D. T. Moore, L. M. Wheeler, J. Ryter, N. J. Breslin, J. J. Berry, S. M. Garner, F. Barnes. Roll-to-roll printing of perovskite solar cells. ACS Energy Lett., 3, 2558-2565(2018).

[71] L. Qiu, Z. Liu, L. K. Ono, Y. Jiang, D.-Y. Son, Z. Hawash, S. He, Y. Qi. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater., 29, 1806779(2019).

[72] G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.-S. Kwok. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci., 4, 1700463(2017).

[73] W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z.-B. He. Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater., 8, 1703519(2018).

[74] T. Qin, W. Huang, J.-E. Kim, D. Vak, C. Forsyth, C. R. McNeill, Y.-B. Cheng. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 31, 210-217(2017).

[75] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515(2019).

[76] Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han. Stabilizing heterostructures of soft perovskite semiconductors. Science, 365, 687-691(2019).

[77] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun., 8, 15684(2017).

Please Enter Your Email: