Main > High Power Laser Science and Engineering >  Volume 5 >  Issue 3 >  Page 03000e17 > Article
  • Abstract
  • Abstract
  • Figures (27)
  • Tables (0)
  • Equations (0)
  • References (172)
  • Get PDF
  • View Full Text
  • Paper Information
  • Received: Nov. 16, 2016

    Accepted: May. 11, 2017

    Posted: Jul. 4, 2019

    Published Online: Nov. 21, 2018

    The Author Email: I. Prencipe (i.prencipe@hzdr.de)

    DOI: 10.1017/hpl.2017.18

  • Get Citation
  • Copy Citation Text

    I. Prencipe, J. Fuchs, S. Pascarelli, D. W. Schumacher, R. B. Stephens, N. B. Alexander, R. Briggs, M. Büscher, M. O. Cernaianu, A. Choukourov, M. De Marco, A. Erbe, J. Fassbender, G. Fiquet, P. Fitzsimmons, C. Gheorghiu, J. Hund, L. G. Huang, M. Harmand, N. J. Hartley, A. Irman, T. Kluge, Z. Konopkova, S. Kraft, D. Kraus, V. Leca, D. Margarone, J. Metzkes, K. Nagai, W. Nazarov, P. Lutoslawski, D. Papp, M. Passoni, A. Pelka, J. P. Perin, J. Schulz, M. Smid, C. Spindloe, S. Steinke, R. Torchio, C. Vass, T. Wiste, R. Zaffino, K. Zeil, T. Tschentscher, U. Schramm, T. E. Cowan. Targets for high repetition rate laser facilities: needs, challenges and perspectives[J]. High Power Laser Science and Engineering, 2017, 5(3): 03000e17

    Download Citation

  • Special Issue
  • Target Fabrication
  • Share
High Power Laser Science and Engineering, Vol. 5, Issue 3, 03000e17 (2017)

Targets for high repetition rate laser facilities: needs, challenges and perspectives 

I. Prencipe1,†, J. Fuchs2, S. Pascarelli3, D. W. Schumacher4, R. B. Stephens5, N. B. Alexander6, R. Briggs3, M. Büscher7,8, M. O. Cernaianu9, A. Choukourov10,11, M. De Marco10, A. Erbe12,13, J. Fassbender12,13, G. Fiquet14, P. Fitzsimmons6, C. Gheorghiu9, J. Hund15, L. G. Huang1, M. Harmand14, N. J. Hartley1, A. Irman1, T. Kluge1, Z. Konopkova16, S. Kraft1, D. Kraus1, V. Leca9, D. Margarone10, J. Metzkes1, K. Nagai17, W. Nazarov26, P. Lutoslawski10, D. Papp18, M. Passoni19,20, A. Pelka1, J. P. Perin21, J. Schulz16, M. Smid10, C. Spindloe22,23, S. Steinke24, R. Torchio3, C. Vass18, T. Wiste10, R. Zaffino25, K. Zeil1, T. Tschentscher16, U. Schramm1,13, and T. E. Cowan1,13

Author Affiliations

  • 1Institute of Radiation Physics, Helmholtz–Zentrum Dresden–Rossendorf, Germany
  • 2LULI – CNRS, Ecole Polytechnique, CEA : Université Paris-Saclay; UPMC Univ. Paris 06 - Sorbonne Universités – F-91128 Palaiseau cedex, France
  • 3European Synchrotron Radiation Facility, France
  • 4Ohio State University, USA
  • 5University of Pennsylvania, USA
  • 6Inertial Fusion Technologies, General Atomics, USA
  • 7Peter Grünberg Institute PGI-6, Forschungzentrum Jülich, Germany
  • 8Heinrich-Heine-University Düsseldorf, Germany
  • 9Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH) – Extreme Light Infrastructure – Nuclear Physics (ELI-NP), Romania
  • 10Institute of Physics ASCR, FZU, ELI-Beamlines project, Czech Republic
  • 11Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
  • 12Institute of Ion Beam Physics and Materials Research, Helmholtz–Zentrum Dresden–Rossendorf, Germany
  • 13Technische Universität Dresden, Germany
  • 14Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR CNRS 7590, UPMC Univ. Paris 06 – Sorbonne Universités, France
  • 15Schafer Corporation, USA
  • 16European XFEL, Germany
  • 17Laboratory for Chemistry and Life Science, Institute of Innovative Research (IIR), Tokyo Institute of Technology, Japan
  • 18ELI-ALPS, ELI-HU Non-Profit Ltd., Hungary
  • 19Department of Energy, Politecnico di Milano, Italy
  • 20INFN-Sezione di Milano, Italy
  • 21CEA Grenoble, INAC, Service des Basses Temperatures, France
  • 22Science and Technology Facilities Council, Rutherford Appleton Laboratory, UK
  • 23Scitech Precision Ltd, Rutherford Appleton Laboratory, UK
  • 24Lawrence Berkeley National Laboratory, USA
  • 25Institute of Microelectronics of Barcelona, National Center of Microelectronic, Spanish Research Council, Spain
  • 26University of St. Andrews, UK

Abstract

A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.

keywords

Please Enter Your Email: