• High Power Laser Science and Engineering
  • Vol. 8, Issue 4, 04000e45 (2020)
Yangshuai Li1, Bingyan Wang1, Panzheng Zhang1, Yanli Zhang1, Yanfeng Zhang1, Shenlei Zhou1, Weixin Ma2, and Jianqiang Zhu1、*
Author Affiliations
  • 1Key Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
  • 2Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai201800, China
  • show less

    Abstract

    As the key part for energy amplification of high-power laser systems, disk amplifiers must work in an extremely clean environment. Different from the traditional cleanliness control scheme of active intake and passive exhaust (AIPE), a new method of active exhaust and passive intake (AEPI) is proposed in this paper. Combined with computational fluid dynamics (CFD) technology, through the optimization design of the sizes, shapes, and locations of different outlets and inlets, the turbulence that is unfavorable to cleanliness control is effectively avoided in the disk amplifier cavity during the process of AEPI. Finally, the cleanliness control of the cavity of the disk amplifier can be realized just by once exhaust. Meanwhile, the micro negative pressure environment in the amplifier cavity produced during the exhaust process reduces the requirement for sealing. This method is simple, time saving, gas saving, efficient, and safe. It is also suitable for the cleanliness control of similar amplifiers.

    1 Introduction

    As the key part for energy amplification of high-power laser systems, disk amplifiers are responsible for more than 99.9% of energy amplification. Cleanliness is one of the key factors that determine the operation efficiency and life of the amplifiers. Therefore, it is especially important to achieve cleanliness control of the amplifiers[13]. The traditional cleanliness control method of the disk amplifiers is ‘active intake + passive exhaust’ (AIPE)[49]. This method uses clean air or nitrogen as a clean purge gas at a certain pressure. Owing to the particularity of the amplifier structure, it is easy to cause turbulence during the process of AIPE. As a result, the contamination floating with the airflow is difficult to exclude from the amplifier cavity. To completely realize cleanliness control, the most common method is to extend the intake and exhaust times. This method is time consuming and gas consuming. In addition, the use of high-pressure gas (one or two standard atmospheric pressures) in this method, generates certain requirements for the sealing of the amplifier cavity. Later, in order to achieve the cleanliness control of the amplifier, the method of intermittent multiple active intake and passive exhaust (IMAIPE) was developed[10], that is, the pollutant concentration was diluted by multiple and intermittent intake and exhaust. Finally, the amplifier cavity is clean. Similarly, this method of IMAIPE is also time consuming, gas consuming, and also has some problems and risks caused by high gas pressure. In order to realize the cleanliness control of the amplifier cavity at one time, based on the original cleanliness control method of AIPE, through the reasonable design of air inlets and outlets of different amplifiers, Ren et al.[11,12] realized cleanliness control with almost no turbulence. His findings also indicate that the amplifier cavity can quickly achieve cleanliness control without turbulence. However, this method also uses high-pressure gas directly in the amplifier cavity, without the secondary partial pressure of the gas chamber. The high pressure brings great danger. This method increases gas consumption and is not operable.

    Copy Citation Text
    Yangshuai Li, Bingyan Wang, Panzheng Zhang, Yanli Zhang, Yanfeng Zhang, Shenlei Zhou, Weixin Ma, Jianqiang Zhu. A novel cleanliness control method for disk amplifiers[J]. High Power Laser Science and Engineering, 2020, 8(4): 04000e45
    Download Citation
    Category: Research Articles
    Received: Aug. 17, 2020
    Accepted: Oct. 15, 2020
    Published Online: Jan. 5, 2021
    The Author Email: Jianqiang Zhu (jqzhu@siom.ac.cn)