• Frontiers of Optoelectronics
  • Vol. 9, Issue 1, 112 (2016)
Jing DAI1、2, Minming ZHANG1、2、*, Feiya ZHOU1、2, and Deming LIU1、2
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    [1] Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in siliconon- insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
    [2] Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328–1330
    [3] Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12 (4): 615–626
    [4] Ng H,WangMR, Li D,Wang X, Martinez J, Panepucci R R, Pathak K. 1_4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. IEEE Photonics Technology Letters, 2007, 19(9): 704–706
    [5] Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes- Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155
    [6] Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
    [7] Guarino A, Poberaj G, Rezzonico D, Degl’innocenti R, Günter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407–410
    [8] Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660– 668
    [9] Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
    [10] Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill 1985, 36–44
    [11] Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
    [12] Maune B, Lawson R, Gunn C, Scherer A, Dalton L. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Applied Physics Letters, 2003, 83(23): 4689–4691
    [13] Falco A D, Assanto G. Tunable wavelength-selective add–drop in liquid crystals on a silicon microresonator. Optics Communications, 2007, 279(1): 210–213
    [14] De Cort W, Beeckman J, James R, Fernandez F A, Baets R, Neyts K. Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 79–85
    [15] De Cort W, Beeckman J, Claes T, Neyts K, Baets R.Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
    [16] Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
    [17] Anderson P A, Schmidt B S, Lipson M. High confinement in silicon slot waveguides with sharp bends. Optics Express, 2006, 14(20): 9197–9202
    [18] Kargar A, Chao C. Design and optimization of waveguide sensitivity in slot microring sensors. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(4): 596– 603
    [19] Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Optics Express, 2012, 20(14): 15359–15376
    [20] Barrios C A, Lipson M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Optics Express, 2005, 13 (25): 10092–10101
    [21] Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen A K, Fedeli J M, Fournier M, Hochberg M. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19(5): 3952–3961
    [22] Desmet H, Neyts K, Baets R. Liquid crystal orientation on patterns etched in silicon on insulator. Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 2006, 6183: 61831Z
    [23] Ge Z, Wu T X, Lu R, Zhu X, Hong Q, Wu S. Comprehensive threedimensional dynamic modeling of liquid crystal devices using finite element method. Journal of Display Technology, 2005, 1(2): 194– 206
    [24] Fallahkhair A B, Li K S, Murphy T E. Vector finite difference modesolver for anisotropic dielectric waveguides. Journal of Lightwave Technology, 2008, 26(11): 1423–1431
    [25] Dell’Olio F, Passaro V M. Optical sensing by optimized silicon slot waveguides. Optics Express, 2007, 15(8): 4977–4993
    [26] Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’ Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE Journal of Quantum Electronics, 2010, 46(5): 762–768
    Copy Citation Text
    Jing DAI, Minming ZHANG, Feiya ZHOU, Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Frontiers of Optoelectronics, 2016, 9(1): 112
    Download Citation
    Received: Sep. 15, 2014
    Accepted: Jan. 21, 2015
    Posted: Jan. 1, 2016
    Published Online: Oct. 21, 2016
    The Author Email: ZHANG Minming (mmz@hust.edu.cn)