• High Power Laser Science and Engineering
  • Vol. 7, Issue 1, 010000e9 (2019)
Gang Xia1、2、3, Wei Fan1、2, Dajie Huang1、2, He Cheng1、2, Jiangtao Guo1、2、3, and Xiaoqin Wang1、2、3
Author Affiliations
  • 1Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less

    Abstract

    In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive metal layer of commercial liquid crystal electro-optical spatial light modulators is replaced by azobenzene-based photoalignment layers patterned by noncontact photolithography. Using the azobenzene-based photoalignment layer, a liquid crystal binary mask for beam shaping is fabricated. In addition, the shaping ability, damage threshold, write/erase flexibility and stability of the liquid crystal binary mask are tested. Using a 1 Hz near-IR (1064 nm) laser, the multiple-shot nanosecond damage threshold of the liquid crystal mask is measured to be higher than $15~\text{J}/\text{cm}^{2}$. The damage threshold of the azobenzene-based photoalignment layer is higher than $50~\text{J}/\text{cm}^{2}$ under the same testing conditions.
    Copy Citation Text
    Gang Xia, Wei Fan, Dajie Huang, He Cheng, Jiangtao Guo, Xiaoqin Wang. High damage threshold liquid crystal binary mask for laser beam shaping[J]. High Power Laser Science and Engineering, 2019, 7(1): 010000e9
    Download Citation
    Special Issue: High Energy Density Physics and High Power Lasers 2018
    Received: Jul. 6, 2018
    Accepted: Nov. 30, 2018
    Published Online: Feb. 25, 2019
    The Author Email: